
Ruby
Past, Present and Future

Yukihiro "Matz" Matsumoto
まつもと ゆきひろ
matz@ruby-lang.org

Copyright (c) 2008 Yukihiro "Matz" Matsumoto, No rights reserved
though.

 The News in 2004-2006

 Ruby on Rails

 Ruby on Rails

 Changed Our Lives a Lot
 Changed Ruby

 The News in 2007-2008

 Alternative Implementations
 YARV
 JRuby
 Rubinius
 Ruby.NET
 IronRuby

 Alternative Implementations

 Complete
 Run Rails
 Faster
 Than Plain 1.8 (MRI)

 But Look at Bright Side

 I consider myself as

 No Great Programmer
 But Language Designer

 So..

 I can Rather Focus on
Language Issues

 Not Implementation
 But I Have Mixed Feeling

 Past, Present and Future

 History
 Philosophy
 Forecast

The History

 More than 4,000 years ago

 We had One True Language.

 Seek for True Language

 Fortran

 Seek for True Language

 Cobol

 Seek for True Language

 Lisp

 Seek for True Language

 Algol

 Seek for True Language

 C / C++

 Seek for True Language

 Java / C#

 Seek for True Language

 Scripting

 Seek for True Language

 Perl

 Seek for True Language

 Python

 Seek for True Language

 Ruby

 Pre-History

 OO Fanboy
 Language Geek

 In 1993

 Project Started
 1993-02-24
 Mere Hobby

 Goals

 Scripting
 a la Perl
 Nice Clean Syntax
 With OO

 Real Goal

 To Enjoy
 Making Language
 Implementation
 Programming

 Design Process

 Lisp Sentatics
 Smalltalk OO
 Conservative Syntax

 Design Process

 Deconstruct Perl
 Reorganize into Class Library

 Design Process

 Iterators from CLU
 Higher-order Functions

 Design Process

 Some Spice from Python
 ..and Others

 Released

 1995-12-21

 fj.sources

 In 1997

 Hired by NaCl
 Full-time OSS Developer

 In 1999

 First Book

 In 2000

 First English Book

 In 2004

 Ruby on Rails

 10 Years Ago

 Ruby?
 What’s That?
 Language?
 See This Cool Java!

 5 Years Ago

 Ruby?
 I’ve Heard of It.
 But I haven’t Used It YET.

 2 Years Ago

 Ruby!
 I Know!
 It’s for Rails, Right?

Status Quo

 Ruby’s Mindshare

 From Java To Ruby

 Why Ruby?

 Rails!
 Productivity
 Joy

 Rails

 No Need to Explain

 Productivity

 More and More
Emphasized Recently:

 IT Market Grows
 Budget Don’t
 Tigher Schedule

 How to Be Productivity

 Tool Support
 IDE, etc.
 Methodology
 XP, Scrum, etc.
 Language
 Ruby!

 Language for Productivity

 A Language is one of many
tools

 But it changes project’s
characteristic

 Sapir-Whorf hypothesis

 Sapir-Whorf hypothesis

 Language determines
 the way we think.

 Sapir-Whorf hypothesis

 A Language Can Make Us
Feel

 More Powerful
 More Effective
 More Freedom

 Joy

 We Can Feel Joy Thrugh
Programming

 Ruby’s Primary Goal
 Too Underestimated in the

Past

 Ruby Became "Enterprisey"

 a lot of big names using
Ruby (and Rails)

 Sun
 Microsoft
 Oracle
 IBM
 etc.

 Is It GOOD?

 Probably
 We can Earn Bread
 We can Meet Here
 But not the First Priority
 Programmer First

 Is It DANGEROUS?

 Maybe
 Ruby is not Rails
 Rails Gathered Lot of People

Who Don’t Know About Ruby

 Ruby has Longer Lifecycle

 15 Year-old Program
 But Some Languages are

more than 50!
 We Must Survive

 Status Quo

 Implementation
 Language
 Unicode

 Implementation

 MRI (1.8)
 JRuby (1.8)
 Rubinius (1.8)
 YARV (1.9)

 MRI

 Matz’s
 Ruby
 InterPreter

 JRuby

 Ruby on JVM
 1.8 Compatible
 Faster Than MRI
 Sometimes Beats 1.9

 Rubinius

 Ruby in Ruby
 Core in C
 Library in (subset of) Ruby
 Progressing Fast

 YARV

 Yet Another Ruby VM
 Bytecoded Stack VM
 Fastest Ruby on Earth
 50 Times Faster on Some

Benchmarks
 Can be Even Faster

 Language

 1.9 is Bleeding Edge
 Clarifying Edges and Corners

of the Language
 Adding New Features

 See Google TechTalk Video
on YouTube

 1.9 Significants

 Enumerator
 Fiber
 Block Scope
 M17N

 Enumerator

 Built-in
 Enumerator Chain
 External Iterator

 Enumerator Chain

 ary.map.with_index{|x,i|
 ...
 }
 ary.find.with_index{|x,i|
 ...
 }

 External Iterator

 e1 = [1,2,3,4].each
 e2 = [10,11,4].each
 loop {
 p e1.next+e2.next
 }
 # prints 11, 13 and 7

 Fiber

 Cooperative Thread
 Switch Context Explicitly
 Used to Implement External

Iterator
 More Lightweight Than

Threads

 M17N

 Multilingualization

 M17N means a lot

 Handle Locales
 Handle Characters
 Handle Glyphs
 Handle Cultures

 M17N in Ruby

 Handle Locales
 Handle Characters
 Handle Glyphs
 Handle Cultures

 How to Handle Characters

 Ignorance
 Unicode
 Multi-Encoding

 How to Handle Characters (1)

 By Ignoring Tough Cases
 ASCII
 ISO-8859-1 (Latin-1)
 Not Good for Japanese

 How to Handle Characters (2)

 By Using Unicode
 UTF-8
 UTF-16
 UTF-32
 Most Languages Do This
 Java, Perl, Python...

 UTF-8

 ASCII compatible
 Variable Char Length
 O(n) for Random Access
 Perl uses UTF-8

 UTF-16

 16bits Per Character
 Variable Char Length
 O(n) for Random Access
 Requires More Space
 Endian Aware
 Java, Python use UTF-16

 UTF-32

 32bits Per Character
 Fixed Char Length
 O(1) for Random Access
 Much More Space
 Endian Aware
 A Few Languages use

UTF-32

 Unicode Problems

 No Perfect Encoding
 No Perfect World
 Conversion Issues
 Performance Cost
 Broken Characters
 Extra-Unicode Chars

 If There’s No Perfect Encoding

 How about Making it
Extensible?

 No Need for Conversion
 for Most of the Cases
 No Encoding Breakage
 Extra-Unicode Chars Can be

Handled

 Issues

 Possible?
 Performance?

 Possible?

 Yes,
 We did for long time for

Regexp
 We Made it in 1.9

 Performance?

 Yes,
 Except for Random Access

(O(n))
 But Other Encoding Too
 O(1) if Encoding is Fixed

Width

 Encoding-aware

 # -*- coding: UTF-8 -*-
 print "Hello まつもと\n"

 Encoding-aware

 open(path, "r:euc-jp") {|f|
 ...

 }

The Future

 Ruby 2.0

 Innovation Bait
 Motivation Matters
 OSS Should Move Forward

or Die
 We need Baits to go on
 Scalability is the Keyword

 Scalability

 Data Size
 Number of CPU
 Program Size
 Team Size

 Data Size/CPU Number

 Parallell
 Distributed
 Actor

 Team/Program Size

 Keyword Arguments
 Selector Namespace
 Method Combination
 Aspect Oriented
 More Functional Programming

 Keyword Arguments

 Order Free
 More Reabable
 Objective-C

 Selector Namespace

 Open Class
 jcode.rb
 But Global Side-effect is

Basically Bad
 So Statically Scoped Open

Class

 Method Combination

 Method Replacement Using
alias May Conflict

 Allow pre and postHooks
around Methods

 Can Be Stackable

 More Functional Programming

 More Abstraction
 LazyArray
 Delay/Force

 Summary

 Ruby Celebrated Its 15th
Birthday on 2008-02-24

 Ruby Focuses on
Programmers, not Computers

 Summary

 Ruby Has Established in IT
Market

 That’s Fine
 But Don’t Forget the Primary

Goal

 Summary

 Multiple Interpreters
 They are All Great
 YARV is Improving
 So are Others
 That’s Fine

 Summary

 The Future is in Scalability
 We Keep The Language

Evolving
 Since Motivation Matters
 We Need to Move Forward or

Die

One More Thing...

 Do You Play Golf?

 Not a Game of Balls and
Clubs

 a Game to Make Programs
Shorter

 Goruby

 A Language Specialized
for Golf

 ## specialized method
 h # => Hello World
 ## abbribiated access
 p "1".t_i # 1

 Goruby

 You can Play with type:

 make golf

 Have Fun!

Thank You

