
Evan Phoenix

code://Rubinius/technical
/GC, /cpu, /organization, /compiler

Evan Phoenix

weeee!!

Evan Phoenix

Rubinius

• New, custom VM for running ruby code

• Small VM written in not ruby

• Kernel and everything else in ruby

Evan Phoenix

http://rubini.us
git://rubini.us/code

http://rubini.us
http://rubini.us

Evan Phoenix

OS

VM

Kernel

Primitives

User

FFI

Evan Phoenix

VM Services

• ObjectMemory

• Generational GC

• Virtual CPU

• Custom Instruction Set

• Primitive operations

Evan Phoenix

ObjectMemory

• Allocation

• Variable sized objects

• Opaque objects

• Accurate collection of all garbage objects

• No C stack / register walking

Evan Phoenix

Object Layout

Flags

Number of fields

Class Pointer

Variables sized

Number of fields indicates how many

3
 w

o
rd

s
N

 w
o

rd
s

Evan Phoenix

Object Flags

• Used by GC

• Forwarded, Remember, Mark,
ForeverYoung

• Allow for opaque objects

• StoresBytes

• Allow for weak references

• RefsAreWeak

Evan Phoenix

Opaque Objects

• Allows GC to raw bytes

• ByteArray class used by String primary is
the example

• Allows GC to store C structs

• Used by VM to implement some objects

• MethodContext, SendSite, etc.

Evan Phoenix

Generational

• Young object space (YOS) uses Baker/
Cheney copy collector

• Made simple using accurate collection

• Mature objectp space (MOS) uses simple
mark/sweep collector

• Write barrier keeps GC sane

Evan Phoenix

Write Barrier

• Piece of C code run everytime an object
reference is stored into another object

• Allows the VM to be sure it knows all
objects that point into YOS

• Allows GC to collect YOS independently

Evan Phoenix

Allocation Steps

• YOS has 2 halves

• YOS current half tried first

• if fails, use other half

• if fails, use MOS (never fails)

Evan Phoenix

Accurate Collection

• VM is able to see every object reference in
system

• Makes copy collector possible

• Collection is only performed at ‘safe points’

• Only one defined currently

• At a safe point, there are no hidden object
references

Evan Phoenix

No Platform Specific
GC code!

Evan Phoenix

/cpu

Evan Phoenix

Virtual CPU

• ‘bytecode’ interpreter

• ‘registers’ provide ability to implement
flow control

• Uses some techniques to improve
performance

• Direct threading, integer opcodes

Evan Phoenix

Instructions
• 114 instructions

• Instructions created as needed

• Each instruction is 4 bytes (a 32bit integer)

• Allows for up to 2 operands, defined
statically per instruction

• Most are flow control related, very few
manipulate objects directly

• Differs from Java in this way

Evan Phoenix

MethodContext

• First class ‘stack frame’ objects

• Contains all information about the current
of a method

• Data is copied between a MC and the CPU
when the MC is run

• If new MC is created, information in CPU is
copied back to original MC

Evan Phoenix

def silly
 a = 3
 mc = MethodContext.current
 mc.locals[0] = 18
 p a # => 18
end

Evan Phoenix

def evil_and_silly
 a = 3
 mc = MethodContext.current.sender
 mc.locals[0] = 18
end

def poor_parent
 a = 3
 evil_and_silly()
 p a # => 18
end

Evan Phoenix

Spaghetti Stack

• The ‘call stack’ is a linked list

• Each MethodContext has a field call sender

• Each sender points to the MC to restore
when this MC returns

• Toplevel MC has nil sender, causing the VM
to exit.

Evan Phoenix

Task Objects

• Some ‘registers’ of the CPU are global, i.e.
not stored in each MC

• These are saved and restored from Task
objects

• Each Task object represents the complete
state of the CPU

• Used as the muscle in the Thread and
Continuation classes

Evan Phoenix

Primitives

• Basic operations that the VM provides

• Most are simple chunks of code with fixed
number of arguments and one return

• Some reconfigure the CPU in a new way to
provide unique functionality

• Hooked up to a method using syntax

• Can succeed or fail

Evan Phoenix

Hooking Up

class Fixnum
 def +
 Ruby.primitive :fixnum_add
 end
end

• Compiler detects syntax and saves the name of the
primitive in the CompiledMethod object

Evan Phoenix

Simple - fixnum_add

 ARITY(1);
 GUARD(FIXNUM_P(self));
 OBJECT t1 = stack_pop();
 if (FIXNUM_P(t1)) {
 stack_push(fixnum_add(state, self, t1));

return TRUE;
 } else {

return FALSE;
 }

Evan Phoenix

Primitive Failure
• Code after Ruby.primitive is run, allowing

the method to try again, provide a different
implementation, or fail.

class Fixnum
 def +(other)
 Ruby.primitive :fixnum_add
 raise “damnit!”
 end
end

Evan Phoenix

FFI

• Implemented using a couple of primitives

• Allows Ruby code to bind and directly call
C functions

• Automatically converts between Ruby and
C types

Evan Phoenix

module OutsideRuby
 attach_function ‘strlen’, [:string], :int
end

str = “hello denmark”
p OutsideRuby.strlen(str) # => 13

Evan Phoenix

• Allows for faster development of methods
tied directly to native libraries

• getpwnam, socket, etc.

Evan Phoenix

• Similar to 1.8

• Green threads built on Task objects

• Preemption based on simple timer

• API directly to VM thread scheduler

• Channel objects provide scheduler
notifications

Threads

Evan Phoenix

Dispatch

• Largest amount of time spent in calling
methods

• Any performance benefits have big pay offs

Evan Phoenix

Caching

• Finding the correct method takes the most
time

• Caching provides ways to shortcut
searching

• Multiple layers of caching

Evan Phoenix

Global Cache

• For each send, the class and method name
are hashed

• Hash value is clamped and used as index
into large table

• Value is validated and used

Evan Phoenix

Send Site Cache

• Each place where a method is performed is
called is called a send site

• Observations about code usage find
interesting patterns

• Most code is NOT polymorphic

• Each time a method is called, self,
arguments, and locals are the same ‘type’

Evan Phoenix

• Initially, send site is empty

• Causes the global cache to be consulted

• Information within the send site is
updated

• Next time send site is used

• Information contained within is validated
and used directly

Evan Phoenix

• Locality contains very rich information

• Any exploitation of locality can increase
performance

• Java’s Hotspot uses locality as the primary
exploitation mechanism

Locality

Evan Phoenix

Other VM operations

• Ability to directly save, load, and execute
a .rbc file

• Simple multi-VM spawn and communication

• Basic abilities to manipulate builtin classes
such as Hash, Array, etc.

Evan Phoenix

Division of Ruby Code

Evan Phoenix

Kernel-land

• All ruby code located in kernel/

• VM loads code directly without require

• Phase order: bootstrap, platform, kernel

• Load order of .rb files determined by
special dependencies comments

Evan Phoenix

User-land

• All code loaded by the kernel

• No strict division from kernel code like an
OS

• Label used primarily to group code when
doing Rubinius development

Evan Phoenix

/compiler

Evan Phoenix

VM / Compiler
boundary

• VM provides ability to execute
CompiledMethod objects

• CompiledMethod objects are normal, first
class objects

• Can easily be built up from scratch, one
bit at a time

Evan Phoenix

Sexp

• 2 VM primitives

• Provide ability to parse and emit code as
data

• Thanks to ParseTree

• In the future, the parser will be all in ruby

• ruby_parser (Thanks Ryan Davis)

Evan Phoenix

"aoeu".count

Ruby Code:

Sexp:

[:call, [:str, "aoeu"], :count]

Evan Phoenix

• Sexps are the input to the compiler

• Allows for custom Sexp composition

• Compiler transforms Sexp into internal
tree

• Compiler walks tree, using visitor pattern
to generate bytecode

