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Agenda

• Motivation

• Improving JVM developer productivity

• Getting started with Roo

• Roo design principles
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• Roo design principles

• Roo application architecture – Hands on

• Roo Roadmap

• Answers to frequently asked questions



Motivation: We Have Work to Do

• Enterprise Java has a 
perception problem

• Everyone likes to kick 
sand in our face
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sand in our face

• And we make it easy
for them

– Enterprise Java 
productivity is a soft 
target



Would-be Competitors

Gutmans hopes that Zend can convert individuals 
[to PHP] who think Java has become bloated and 
organizations struggling to find affordable Java 
Enterprise Edition (Java EE) programmers

Andi Gutmans, Zend CEO
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Why Anything and Everything Related to Java 
[Web] Programming and Open-Source Frameworks 
Sucks Major Ass in Comparison to Anything and 

Everything Related to Ruby and Rails.

Obie Fernandez, Rails guy



We Must be Honest: Some of the 
Criticism is Deserved: It’s too Hard to 
Get Started on the JVM

• Modern enterprise Java is way better 
than 5 years ago

• But…it’s still too hard to…

– Start a new Java project

– Obtain and integrate all the necessary 
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– Obtain and integrate all the necessary 
software

• Too much of our time is spent doing 
things that add too little value

– We have great building blocks, but we need 
to improve the experience



Time to Step Up and Fight 
Back

• Don’t know about you, 
but I’m as mad as hell 
and I’m not going to 
take it any more

• We know the JVM is 
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• We know the JVM is 
right for enterprise 
problems

• Time to show 
Rails/Django/PHP etc. 
that the JVM can 
compete on 
productivity



Two Key Problems

•Non JVM technologies have demonstrated a 
greater focus on developer productivity, with 
good results

•Java “Productivity” solutions typically dead ends 
like MDA or bloatware from old world vendors

No one owns 
the whole 
problem
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•It’s too easy to concentrate on hard problems

•We forget how much productivity is wasted from 
trivial problems

It’s too hard 
to get started 
with projects 
on the JVM



Key Problem: Vendor/project 
fragmentation

• Technical problem - Different sources for:

– Tooling

– Build solution

– RAD solution

– Frameworks and libraries
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– Frameworks and libraries

– Servers

• No joined up thinking

• No one owns the whole productivity 
experience



The Result Looks like This
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• 1970s American Motors Gremlin

• What happens when something is put together out 
of separate pieces



Industry-Wide Trend Towards 
Joined-up Solutions

• It’s great to have choice, but it’s often better to use an 
opinionated approach to streamline things

• Trend towards joined up:

– Stacks (vertical integration

– Experience(Rails)

• SpringSource is focused on tackling the whole problem
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• SpringSource is focused on tackling the whole problem

• Coherent vision for all stages of the lifecycle

– Build/Run/Manage

• Cloud deployment option integrated with 
developer tooling, frameworks natural next 
step



Two SpringSource Solutions For JVM 
Developer Productivity, Targeted at 
Different Audiences

• Grails

– Uses the power of the #1 
dynamic language on the 
JVM

– Large and rapidly growing 

RunBuild
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– Large and rapidly growing 
community

• Roo

– Use intelligent code 
generation to provide 
improved productivity in 
Java

Manage



Commonality

• Dramatically improved productivity

• Convention over configuration

– Learns lessons from other platforms such as Ruby on 
Rails

• Elimination of busywork
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• Elimination of busywork

– Enable developers to write only code that add value

• Both Grails and Roo build on the solid Spring 
underpinnings

– You don’t need to throw away your 
server/management solution

– Easy to work with existing code and skill set



Grails and ROO: Choosing between the 
Two Best Productivity options on the JVM

Java 
programmer?

Yes GrailsYes

No
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Want to work 
in a dynamic 
language? No

Whatever you want to do, the days of creating projects 
by hand are over – Bye Bye Boilerplate



Grails

• Important you also understand the 
benefits that Grails can bring

• Grails creator Graeme Rocher will take 
you through Grails in Depth this 
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you through Grails in Depth this 
afternoon

• In this session I’m going to focus on Roo



Spring Roo

• Takes a code generation approach using 
a static language (Java)

– Generates additional artifacts at 
development time that enable productivity 
benefits
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benefits

• Makes it easier to program the code that 
adds value in Java



Roo design philosophy

• No runtime elements

– Generates code at development time

• Enables you to write only the Java code that 
adds value

• DDD-style approach
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• DDD-style approach

– Driven by entity model

– Makes it easy to move logic into entities, removes 
redundant layer

• Creates entire project in seconds

• Sophisticated round tripping

– Continues to add value throughout the development 
lifecycle



But doesn’t code generation 
suck?

• Yes – If it assumes that writing code is evil

– MDA approach

– Doodleware

• No - If it aims to prioritize writing the right
code
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code

• Roo starts with the assumption that you want
to write code rather than play with models

• Note

– Rails also generates code



Benefits of Code Generation

• (Obvious) Eliminate need to write code 
that is implied already – DRY

– JavaBean methods

– Web layer code
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– Web layer code

• Consistency

• Adds leverage, reduces barriers to 
integrating other technologies
– install security



Roo Architecture

• Roo is Spring at runtime

• Uses Spring features you may not have 
seen, but essentially Spring best 
practices
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practices

• Uses code generation and AspectJ to 
simplify the Java code that you need to 
write



Getting Roo

• Roo is an open source Spring 
community project

• You can download it separately

• Or get it with STS
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• Or get it with STS

– I’ll be demonstrating it with STS 
(2.1.0SR01-e3.5)

• If you use Eclipse and Spring, you 
should use STS – It’s free!

– Now also adding high quality Groovy and 
Grails support



A Building Block: Spring Shell

• Interactive shell helps you

– Create projects

– Add to projects

• Monitors the application, updating 
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• Monitors the application, updating 
generated artifacts as you work

– Maintains its own model

• Tab completion

• Can run standalone or inside STS



Roo scripts

• Roo scripts amount to a higher level language

• Can type commands at the Roo prompt

• Or start with existing Roo scripts

– Save the commands you’ve typed

• Benefits
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• Benefits

– Very concise; Lots of information per character typed

– Facilitate communication of application patterns

– Don’t constrain writing regular Java code



Getting started with Roo

• Creating a new project
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• DEMO



Roo architecture

• Let’s look at a Roo project in detail
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• DEMO



Why does Roo use AspectJ?

• The aim is to avoid busywork, make 
each line of Java count
• Generates JavaBean methods, JPA entity annotations, 

toString methods etc.

• You Do NOT need to write code in 
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• You Do NOT need to write code in 
AspectJ to use Roo

• Delivers other benefits

– @Configurable

– @Transactional

• Can easily add further aspects if you 
choose



What If I Want to Get Off?

• You are not locked into Roo

• Can stop using it at any time and 
maintain code yourself

• Can even go as far as removing Roo-
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• Can even go as far as removing Roo-
generated aspects with AJDT “push-in 
refactoring”

• Means it’s very safe to start using Roo



Extending Roo

• Roo add-ons work at development time

– Different from Grails plugins which have a 
runtime element

• Add-ons automatically picked up in Roo 
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• Add-ons automatically picked up in Roo 
shell

– Add further completions

• Add-on SPI will stabilize as Roo goes GA



Roadmap: Present Release

• Spring Roo 1.0.0.RC2

• Just released

• Very few known issues; refer readme.txt

• Not recommend for third-party add-ons 
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• Not recommend for third-party add-ons 
yet

– Further refinement to add-on internals are 
likely

• Minor changes to command syntax 
possible



1.0.0.GA Roadmap

• 1.0.0.GA will have further add-on work

• More documentation is a major priority

• Cloud Foundry integration will also ship

– Roo applications already deploy to Cloud 
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– Roo applications already deploy to Cloud 
Foundry

– We're already build commands to upload, 
deploy and undeploy your Roo apps directly 
from within Roo!

– Visit cloudfoundry.com and obtain an 
account today

• Targeting final release in November



1.1.0 Roadmap

• More Spring project integration

– Spring Integration

– Spring Blaze DS

– Spring Batch etc
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– Spring Batch etc

• Generation IV web client technology 
support

– Flex, GWT etc

• Further improvements to Web MVC 
model



Project Resources

• www.springsource.org/roo for links

• Spring Forums is an excellent source of 
support

– Dedicated Roo forum at 
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– Dedicated Roo forum at 
forum.springsource.org

– Roo team actively monitor forum and 
answer queries

• Public Subversion and Jira is available



Conclusion

•Roo delivers real productivity gains for 
Java

– Builds on Java's strengths

– Popular, proven technologies you already know
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– Popular, proven technologies you already know

– No runtime

– No lock-in

– Easy to learn and easy to use

•Active, supported, open source project


