
Extreme Java
Productivity with
Spring Roo and

Spring 3.0

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited.

Spring 3.0

Rod Johnson

Agenda

• Motivation

• Improving JVM developer productivity

• Getting started with Roo

• Roo design principles

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 2

• Roo design principles

• Roo application architecture – Hands on

• Roo Roadmap

• Answers to frequently asked questions

Motivation: We Have Work to Do

• Enterprise Java has a
perception problem

• Everyone likes to kick
sand in our face

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 3

sand in our face

• And we make it easy
for them

– Enterprise Java
productivity is a soft
target

Would-be Competitors

Gutmans hopes that Zend can convert individuals
[to PHP] who think Java has become bloated and
organizations struggling to find affordable Java
Enterprise Edition (Java EE) programmers

Andi Gutmans, Zend CEO

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 4

Why Anything and Everything Related to Java
[Web] Programming and Open-Source Frameworks
Sucks Major Ass in Comparison to Anything and

Everything Related to Ruby and Rails.

Obie Fernandez, Rails guy

We Must be Honest: Some of the
Criticism is Deserved: It’s too Hard to
Get Started on the JVM

• Modern enterprise Java is way better
than 5 years ago

• But…it’s still too hard to…

– Start a new Java project

– Obtain and integrate all the necessary

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 5

– Obtain and integrate all the necessary
software

• Too much of our time is spent doing
things that add too little value

– We have great building blocks, but we need
to improve the experience

Time to Step Up and Fight
Back

• Don’t know about you,
but I’m as mad as hell
and I’m not going to
take it any more

• We know the JVM is

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 6

• We know the JVM is
right for enterprise
problems

• Time to show
Rails/Django/PHP etc.
that the JVM can
compete on
productivity

Two Key Problems

•Non JVM technologies have demonstrated a
greater focus on developer productivity, with
good results

•Java “Productivity” solutions typically dead ends
like MDA or bloatware from old world vendors

No one owns
the whole
problem

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 7

•It’s too easy to concentrate on hard problems

•We forget how much productivity is wasted from
trivial problems

It’s too hard
to get started
with projects
on the JVM

Key Problem: Vendor/project
fragmentation

• Technical problem - Different sources for:

– Tooling

– Build solution

– RAD solution

– Frameworks and libraries

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 8

– Frameworks and libraries

– Servers

• No joined up thinking

• No one owns the whole productivity
experience

The Result Looks like This

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 9

• 1970s American Motors Gremlin

• What happens when something is put together out
of separate pieces

Industry-Wide Trend Towards
Joined-up Solutions

• It’s great to have choice, but it’s often better to use an
opinionated approach to streamline things

• Trend towards joined up:

– Stacks (vertical integration

– Experience(Rails)

• SpringSource is focused on tackling the whole problem

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 10

• SpringSource is focused on tackling the whole problem

• Coherent vision for all stages of the lifecycle

– Build/Run/Manage

• Cloud deployment option integrated with
developer tooling, frameworks natural next
step

Two SpringSource Solutions For JVM
Developer Productivity, Targeted at
Different Audiences

• Grails

– Uses the power of the #1
dynamic language on the
JVM

– Large and rapidly growing

RunBuild

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 11

– Large and rapidly growing
community

• Roo

– Use intelligent code
generation to provide
improved productivity in
Java

Manage

Commonality

• Dramatically improved productivity

• Convention over configuration

– Learns lessons from other platforms such as Ruby on
Rails

• Elimination of busywork

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 12

• Elimination of busywork

– Enable developers to write only code that add value

• Both Grails and Roo build on the solid Spring
underpinnings

– You don’t need to throw away your
server/management solution

– Easy to work with existing code and skill set

Grails and ROO: Choosing between the
Two Best Productivity options on the JVM

Java
programmer?

Yes GrailsYes

No

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 13

Want to work
in a dynamic
language? No

Whatever you want to do, the days of creating projects
by hand are over – Bye Bye Boilerplate

Grails

• Important you also understand the
benefits that Grails can bring

• Grails creator Graeme Rocher will take
you through Grails in Depth this

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 14

you through Grails in Depth this
afternoon

• In this session I’m going to focus on Roo

Spring Roo

• Takes a code generation approach using
a static language (Java)

– Generates additional artifacts at
development time that enable productivity
benefits

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 15

benefits

• Makes it easier to program the code that
adds value in Java

Roo design philosophy

• No runtime elements

– Generates code at development time

• Enables you to write only the Java code that
adds value

• DDD-style approach

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 16

• DDD-style approach

– Driven by entity model

– Makes it easy to move logic into entities, removes
redundant layer

• Creates entire project in seconds

• Sophisticated round tripping

– Continues to add value throughout the development
lifecycle

But doesn’t code generation
suck?

• Yes – If it assumes that writing code is evil

– MDA approach

– Doodleware

• No - If it aims to prioritize writing the right
code

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 17

code

• Roo starts with the assumption that you want
to write code rather than play with models

• Note

– Rails also generates code

Benefits of Code Generation

• (Obvious) Eliminate need to write code
that is implied already – DRY

– JavaBean methods

– Web layer code

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 18

– Web layer code

• Consistency

• Adds leverage, reduces barriers to
integrating other technologies
– install security

Roo Architecture

• Roo is Spring at runtime

• Uses Spring features you may not have
seen, but essentially Spring best
practices

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 19

practices

• Uses code generation and AspectJ to
simplify the Java code that you need to
write

Getting Roo

• Roo is an open source Spring
community project

• You can download it separately

• Or get it with STS

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 20

• Or get it with STS

– I’ll be demonstrating it with STS
(2.1.0SR01-e3.5)

• If you use Eclipse and Spring, you
should use STS – It’s free!

– Now also adding high quality Groovy and
Grails support

A Building Block: Spring Shell

• Interactive shell helps you

– Create projects

– Add to projects

• Monitors the application, updating

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 21

• Monitors the application, updating
generated artifacts as you work

– Maintains its own model

• Tab completion

• Can run standalone or inside STS

Roo scripts

• Roo scripts amount to a higher level language

• Can type commands at the Roo prompt

• Or start with existing Roo scripts

– Save the commands you’ve typed

• Benefits

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 22

• Benefits

– Very concise; Lots of information per character typed

– Facilitate communication of application patterns

– Don’t constrain writing regular Java code

Getting started with Roo

• Creating a new project

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 23

• DEMO

Roo architecture

• Let’s look at a Roo project in detail

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 24

• DEMO

Why does Roo use AspectJ?

• The aim is to avoid busywork, make
each line of Java count
• Generates JavaBean methods, JPA entity annotations,

toString methods etc.

• You Do NOT need to write code in

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 25

• You Do NOT need to write code in
AspectJ to use Roo

• Delivers other benefits

– @Configurable

– @Transactional

• Can easily add further aspects if you
choose

What If I Want to Get Off?

• You are not locked into Roo

• Can stop using it at any time and
maintain code yourself

• Can even go as far as removing Roo-

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 26

• Can even go as far as removing Roo-
generated aspects with AJDT “push-in
refactoring”

• Means it’s very safe to start using Roo

Extending Roo

• Roo add-ons work at development time

– Different from Grails plugins which have a
runtime element

• Add-ons automatically picked up in Roo

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 27

• Add-ons automatically picked up in Roo
shell

– Add further completions

• Add-on SPI will stabilize as Roo goes GA

Roadmap: Present Release

• Spring Roo 1.0.0.RC2

• Just released

• Very few known issues; refer readme.txt

• Not recommend for third-party add-ons

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 28

• Not recommend for third-party add-ons
yet

– Further refinement to add-on internals are
likely

• Minor changes to command syntax
possible

1.0.0.GA Roadmap

• 1.0.0.GA will have further add-on work

• More documentation is a major priority

• Cloud Foundry integration will also ship

– Roo applications already deploy to Cloud

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 29

– Roo applications already deploy to Cloud
Foundry

– We're already build commands to upload,
deploy and undeploy your Roo apps directly
from within Roo!

– Visit cloudfoundry.com and obtain an
account today

• Targeting final release in November

1.1.0 Roadmap

• More Spring project integration

– Spring Integration

– Spring Blaze DS

– Spring Batch etc

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 30

– Spring Batch etc

• Generation IV web client technology
support

– Flex, GWT etc

• Further improvements to Web MVC
model

Project Resources

• www.springsource.org/roo for links

• Spring Forums is an excellent source of
support

– Dedicated Roo forum at

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 31

– Dedicated Roo forum at
forum.springsource.org

– Roo team actively monitor forum and
answer queries

• Public Subversion and Jira is available

Conclusion

•Roo delivers real productivity gains for
Java

– Builds on Java's strengths

– Popular, proven technologies you already know

Copyright 2007 SpringSource. Copying, publishing or distributing without express written permission is prohibited. 32

– Popular, proven technologies you already know

– No runtime

– No lock-in

– Easy to learn and easy to use

•Active, supported, open source project

