Software Visualization 101+

Michele Lanza

REVEAL @ Faculty of Informatics
University of Lugano, Switzerland

Part I
Prologue

Micheg [ganza

Object-Oriented Metrics in Practice
Using Software Metrics to
Characterize, Evaluate, and Improve the Design of Object-Oriented Systems

Foreword by Stéphane Ducasse

Springer

Sveburat
Michole ranza

Michog Ranza

Academic Research

Industrial Reality

Military Fantasies

Immersive Software Visualization

- R. Wettel, M. Lanza; Program Comprehension through Software Habitability. In ICPC 2007 (15th IEEE International Conference on Program Comprehension), pp. 231-240, IEEE CS Press, 2007
- R. Wettel, M. Lanza; Visualizing Software Systems as Cities. In VISSOFT 2007 (4th IEEE International Workshop on Visualizing Software for Understanding and Analysis), pp. 92-99, IEEE CS Press, 2007
- R. Wettel, M. Lanza; Visually Localizing Design Problems with Disharmony Maps. In Softvis 2008 (4th ACM International Symposium on Software Visualization), pp. 155-164, ACM Press, 2008
- R. Wettel, M. Lanza; Visual Exploration of Large-scale System Evolution. In WCRE 2008 (15th IEEE Working Conference on Reverse Engineering), pp. 219 - 228, IEEE CS Press, 2008
- R. Wettel, M. Lanza; CodeCity: 3D Visualization of Evolving Large-Scale Software. In ICSE 2008 (30th ACM/IEEE International Conference on Software Engineering), pp. 921-922, ACM Press, 2008.

Richard Wettel

Goals

Goals

Goals

Goals

Part II

Software

[Software is] anything but hardware, [...] the "soft" part is the intangible objects inside the computer.

ntanner">

kdiver">
crorm-agenerantent">
ge" oxc-"<7php bloflabel fiphp blogin

<11 claggo"< ?

 <?php wp_list_pages ('depthonumome)
Sbshowcontent -

-('Previous Articles') +1)
<div 1d="post <?php the ID ()
<h3 clager"
<ul clasen"title"><a hrer-" class="postriphp echo (caposiclass) ;
<li classics">
<li classenicon dathor"><?php e("Posted by".

"><?php the_time (get option ('diuedideas_subtie') ;
<ul classermetalinks"> ['show_metalinks']) : ?>
<1i class="
Gluedideas subtle') coment">くa hret-"
<11 elass="icon ')) ; ?></11>

<?php endif; ?>
<br classe"clear" />
<?php if (SbshowContent) : ?>
<div class="content">

mate if cieme - fiontex
Source Gode = Text

$/^{*}$ A chess program smaller than $\underset{/ * / ~}{\text { (of }}$ non-blank source), by Hill
$/^{*}$ version 3.2 (2000 characters) features:
/* - recursive negamax search
/* - quiescence search with recaptures
/* - recapture extensions
/* - (internal) iterative deepening

* - best-move-first sorting
* - a hash table storing score and best move
\#define $\mathrm{F}(\mathrm{I}, \mathrm{S}, \mathrm{N})$ for(I=S; $\mathrm{I}<\mathrm{N} ; \mathrm{I}++$)
\#define W(A) while(A)
\#define $K(A, B){ }^{*}($ int* $)\left(T+A+(B \& 8)+S^{*}(B \& 7)\right)$
\#define J (A) $K(y+A, b[y])-K(x+A, u)-K(H+A, t)$
\#define U 16777224
struct _ \{int K,V;char X,Y,D;\} A[U];
/* hash table, 16M+8 entries*/
int $V=112, M=136, S=128, I=8 e 4, C=799, Q, N, i$;
/* V=0x70=rank mask, $M=0 \times 88$ */
char 0,K,L,
$w[]=\{0,1,1,3,-1,3,5,9\}$,
/* relative piece values
$o[]=\left\{-16,-15,-17,0,1,16,0,1,16,15,17,0,14,18,31,33,0, /^{*}\right.$ step-vector lists * $7,-1,11,6,8,3,6, \quad /^{*} 1$ st dir. in o[] per piece* $6,3,5,7,4,5,3,6\}$,
/* initial piece setup
[[129],
/* board: half of 16×8 +dummy*
n[]=" ? +nkbrq?*?NKBRQ"
/* piece symbols on printout*/
D(k,q,l,e,J,Z,E,z,n) /* recursive minimax search, k=moving side, n=depth*/

 char $t, p, u, x, y, X, Y, H, B$;
struct_*a=A;
$\mathrm{j}=\left(\mathrm{K}^{*} \mathrm{E}^{\wedge} \mathrm{J}\right) \& \mathrm{U}-9$;
$W((h=A[++j] \cdot K) \& \& h-Z \& \&--i)$
a+=i?j:0,
if(a->K)
$\{d=a->D ; v=a->V ; X=a->X$;
if $(d>=n)$
\{if($v>=l|X \& S \& \& v<=q| X \& 8)$ return v;
$d=n-1 ;$
$X_{8}=\sim M$;
YX\&=~M; $Y=a->Y$
$\mathrm{Y}=\mathrm{d}$? $\mathrm{Y}: 0$;
\}else $d=X=Y=0$;
N++;
$W(d++n \mid z==8 \& N<1 e 7 \& d<98)$
($=B=x$.
$\{x=B=X$;
$\mathrm{m}=\mathrm{d}>1$? $-\mathrm{I}: \dot{e}$:
$\mathrm{m}=\mathrm{d}>1$? $-\mathrm{I}: \mathrm{e}$;
do $\{u=\mathrm{b}[\mathrm{x}]$;

$\{r=p=u \& 7$;
$j=0[p+16]$.
$W(r=p>2 \& r<0 ?-r:-o[++j])$
\{A:
R $A=x ; F=G=S$;,$~$
do $\{H=y+=r$;
if $(Y \& 8) H=y=Y \& \sim M$;
if (y\&M)break;
if $(p<3 \& y==E) H=y \wedge 16$;
$t=b[H] ; i f(t \& k \mid p<3 \&!(r \& 7)!=!t) b r e a k$
$i=99^{*} w[t \& 7]$. $\mathrm{i}=99^{*} \mathrm{w}[\mathrm{t} \& 7]$;
/* lookup pos. in hash table*
/* try 8 consec. locations *
/* first empty or match
/* dummy A[0] if miss \& full*
/* hit: pos. is in hash tab */
/* examine stored data
/* if depth sufficient
/* use if window compatible *
/* or use as iter. start
/* with best-move hint
/* don't try best at $\mathrm{d}=0$
/* start iter., no best yet *
/* node count (for timing) *
/* iterative deepening loop */
/* start scan at prev. best *
/* request try noncastl. 1st*
/* scan board looking for *
/* own piece (inefficient!)*
/* own piece (inefficient!)*
/* p = piece type (set r>0) */
/* loop over directions o[] */
/* resume normal after best */
/* $^{*}(x, y)=$ move, $(F, G)=$ castl. R^{*}
/* y traverses ray
/* sneak in prev. best move *
/* board edge hit
/* shift capt.sqr */
/* capt capt.sqr. H if e.p.*/
/* value of capt pawn mode */
if $(h=d-(y!=z))$
$\{v=p<6 ? b[x+8]-b[y+8]: 0$
$b[G]=b[H]=b[x]=0 ; b[y]=u \& 31$;
f($p<3$) $)$ \{b[F]=k+6;v+=30;\}
$f(p<3)$

if $(y+r+1 \& S)\{b[y] \mid=7 ; i+=C ;\}$
$v=-D(24-k,-l-(l>e), m>q$? $-m:-q,-e-v-i$ $J+J(0), Z+J(8)+G-S, F, y, h) ;$ $v-=v>e$;
$f(z==9)$
\{if(v!=-I\&x==K\&y==L)
\{Q=-e-i;0=F;return l;\}

$\mathrm{v}=\mathrm{m}$

$b[G]=k+38 ; b[F]=b[y]=0 ; b[x]=u ; b[H]=t ;$
if $(Y \& 8)\{m=v ; Y \&=\sim 8$;goto $A ;\}$
if $(v>m)\{m=v ; X=x ; Y=y \mid S \& G ;\}$
\}
$\mathrm{t}+=\mathrm{p}<5$;
if $\left(\mathrm{p}<3 \& 6^{*} \mathrm{k}+(\mathrm{y} \& \mathrm{~V})==\mathrm{S}\right.$
$|\mid(u \& \sim 24)==36 \& j==7 \& \&$
G\&M\&\&b[G=(x|7)-(r>>1\&7)]\&32
$\& \&!\left(b\left[G^{\wedge} 1\right] \mid b\left[G^{\wedge} 2\right]\right)$
) $\{F=y ; t--;\}$
W(!t);
C. $\}\}\} W((x=x+9 \& \sim M)-B)$;
m=m+I?m:-D(24-k,-I,I,0,J,Z,S,S,1)/2
if $(!a->K|(a->K \& M)!=M| a->D<=d)$
$\{a->K=Z ; a->V=m ; a->D=d ; A->K=0$.
$a->X=X\left|8^{*}(m>q)\right| S *(m<l) ; a->Y=Y$
।*if(z==8) printf("\%2d ply, \%9d searched, \%6d by
(n",d-1,N,m,X,Y\&0x77);*/
\}
if(z\&8) \{K=X;L=Y\&~M;
return m;
\}
main(
\{int j,k=8,*p,c[9]
F(i,0,8)
$\{b[i]=(b[i+V]=0[i+24]+40)+8 ; b[i+16]=18 ; b[i+96]=9$.
$F(j, 0,8) b[16 * j+i+8]=(i-4) *(i-4)+(j-3,5) *(j-3.5)$
F
(i, M, 1035)T[i]=random() >>9;
(1) 0 121)printf("\%c" i\&8\&\&(i+=7)?10:n[b[i]\&15]) /* play loop $\mathrm{p}=\mathrm{c}$,
$\mathrm{N}=0$;
if(*c-10) $\{\mathrm{K}=\mathrm{c}[0]-16 * \mathrm{c}[1]+\mathrm{C} ; \mathrm{L}=\mathrm{c}[2]-16 * \mathrm{c}[3]+\mathrm{C} ;\} \mathrm{else}$ D(k,-1,I, Q, 1, 1, 0, 8,0)
F(i, 0, U)A[i].K=0
if $(D(k,-I, I, Q, 1,1,0,9,2)==I) k^{\wedge}=24$;
/* read input lin

* parse entered move *
* or think up one
/* clear hash table */
/* check legality \& do*/

Old Habits Die Hard

Part Ill

Software Visualization

Software Visualization

"The use of the crafts of typography, graphic design, animation, and cinematography with modern human-computer interaction and computer graphics technology to facilitate both the human understanding and effective use of computer software."

dictatorial

a-to-ri-al (dik'ta-tôr'é-ol, -tō'rè-) ac g; overbearing; autocratic. 2 Of or pe or his rule. - dic'ta.to'ri-al.ly adv. ary, despotic, opinionated, arrogan on (dik'shon) n. 1 The use, choice a ds and modes of expression. 2 The ! words in speaking or singing. $[<]$ n-ar-y (dik'shən•er'ē) n. pl. -ar.ie the words of a language arrange ith their syllabication, pronuncia mology. 2 A similar work havir ents in another language. 3 Any l or terms arranged alphabetical L dictionarium a collection of wo (dik'tom) n. pl. dic.ta (-to) or .tun jgmatic, or positive utterance; a lar saying; a maxim. [$<\mathrm{L}$ dicere p.t. of DO^{1}.
$=$ (dī-dak'tik, di-) adj. 1 Intendec 2 Morally instructive; precepti teach; pedantic. Also di-dac'ti-c] - di.dac'ti-cal-ly adv. - di-dac'ti \mathbf{s} (di-dak'tiks, di-) n. pl. (con: e or art of instruction or educat lid'l) v. dled, dling Informal

Software Visualization

"The use of the crafts of typography, graphic design, animation, and cinematography with modern human-computer interaction and computer graphics technology to facilitate both the human understanding and effective use of

dictatorial

cribes. 3 A person who dictates words
1-to-ri-al (dik'to-tôr'e.ol, -tō'rḕ-) as 5: overbearing; autocratic. 2 Of or pe or his rule. -dic'ta.to'ri.ally adv. ary, despotic, opinionated, arrogan on (dik'shon) $n .1$ The use, choice a ds and modes of expression. 2 The [words in speaking or singing. [$<$ n-ar-y (dik'shən•er'ē) n. pl. ar.ie the words of a language arrange ith their syllabication, pronuncia mology. 2 A similar work havir ents in another language. 3 Any 1 or terms arranged alphabetical L dictionarium a collection of wo (dik'tom) n. pl. dic.ta (-to) or .tun jgmatic, or positive utterance; a lar saying; a maxim. $[<\mathrm{L}$ dicere o.t. of DO^{1}.
$=$ (dī-dak'tik, di-) adj. 1 Intendec 2 Morally instructive; precepti teach; pedantic. Also di-dac'ti-c] -di.dac'ti-cal.ly adv, -di-dac'ti s (di-dak'tiks, di-) n. pl. (cons e or art of instruction or educat lid'1) v. dled, dlina Informal

\#include

\#include
\#include
\#include
<math.h>
<sys/time.h>
<xil/xlib.h>
<xil/keysym.h> double L,o, double $L, 0, P$
$=d t, T, Z, D=1, d$, $\prime=d t, T, Z, D=1, d$,
$s[999], E, h=8, I$, J, K,w[999], M, m, $\mathrm{J}, \mathrm{K}, \mathrm{w}[999], \mathrm{M}, \mathrm{m}, \mathrm{O}$
$\mathrm{n}[999], \mathrm{j}=33 \mathrm{e}-3, \mathrm{i}=$
,n[999], j=33e-3, $i=$
1E3, $x, t, u, v, w, S=$
$74.5,1=221, \mathrm{X}=7.26$
$\mathrm{a}, \mathrm{B}, \mathrm{A}=32.2, \mathrm{C}, \mathrm{F}, \mathrm{H}$;
int N, q, C, Y, p, U;
Window z; char $f[52]$
GC k; main() \{ Display*e=
XOpenDisplay (0) ; $z=$ RootWindow (e, 0) ; for (XSetForeground (e, k=XCreateGC (e, $z, 0,0$), BlackPixel (e, 0))
 0,0, WhitePixel (e, 0)), KeyPressMask) ; for (XMapWindow (e, z) ; ; T=sin (0)) \{ struct timeval $G=\{0, d t \star 1 e 6\}$

 == OlK <fabs (W=T*x-I*E +D*P) lfabs (D=t *D+Z *T-a *E) > K) N=1e4; elsef q=W/K *4E2+2e2; C= 2E2+4e2/K

 XEvent z; XNextEvent (e, \&z)
++ (($\mathrm{N}=\mathrm{XL}$ ookupKeysym
($\&$ z. xkey, 0)) -IT?
N-LT? UP-N?\& E: \&
N-LT? UP-N?\& E:\&
$J: \& u: \& h$) $--\star($
J:\& u: \&h) ; --* (
DN -N? N-DT
DN -N ? N-DT ?N==
RT?\&u: \& W: \&h: \&
) ; $\mathrm{m}=15 \star \mathrm{~F} / 1$;
$C+=(I=M / 1,1 \star H$
$+I \star M+a \star X) \star$

A*r+v*X-F*l+(
$\mathrm{E}=.1+\mathrm{X} * 4.9 / 1, \mathrm{t}$
$=T * \mathrm{~m} / 32-\mathrm{I} * \mathrm{~T} / 24$
)/S; K=F*M+
h * 1e4/1-(T+
E*5*T*E) $/ 3 \mathrm{e} 2$
)/S-X*d-B*A;
$\mathrm{a}=2.63 / 1 * \mathrm{~d}$;
$\mathrm{X}+=(\mathrm{d} * 1-\mathrm{T} / \mathrm{s}$

* (.19*E +a
*. 64+J/1e3
) $-\mathrm{M}^{\star} \mathrm{V}+\mathrm{A}^{\star}$
z) *_; 1 +=
$\mathrm{K} \mathrm{K}^{-}$; $\mathrm{w}=\mathrm{d}$;
sprintef(f,
"\%5d \%3d"
"\%7d", p =1
11.7 , (C=9E3+
$0 * 57.3$) 80550 , (int) i) ; $d+=T *(.45-14 / 1 *$

 179*V) /2312; select ($\mathrm{P}=0,0,0,0, \& \mathrm{G}$) ; $\mathrm{v}-=$

<math.h>
<sys/time.h>
<xil/xlib.h>
<xil/keysym.h>
double double $\mathrm{L}, 0, P$
$=d t, T, Z, D=1, d$ $,=d t, T, Z, D=1, d$,
s
J,K,w[999],M,m,O
,n[999],j=33e-3,i=
1E3, I, t, u,v,w,S=
$74.5,1=221, X=7.26$
$\mathrm{a}, \mathrm{B}, \mathrm{A}=32.2, \mathrm{C}, \mathrm{F}, \mathrm{H}$;
int N, q, C, Y, p, U;
Window z; char $f[52]$
GC k; main() \{ Display*e $=$
XopenDisplay (0); $z=$ RootWindow (e, 0); for (XSetForeground (e,k=xCreateGc scanf("\%lfolfolf", $\left.y+n, w+y, y^{+s}\right)+1 ; y++$); XSelectInput (e, $z=$ XCres
0,0 , WhitePixel (e, 0)), KeyPressMask) ; for (XMapWindow (e, z) ; ; T=s;

sin(j) ; $a=B * T * D-E * W$; XClearWindow (e, z); $t=T \star E+D * B * W$; is

*D; N-1E4\&\& XDrawLine (e, $\mathbf{z}, \mathrm{k}, \mathrm{N}, \mathrm{U}, \mathrm{G}, \mathrm{C}$) ; $\mathrm{N}=$
xDrawString $(e, z, k, 20,380, \pm, 17)$; $D=v$
$\mathrm{E}=1+\mathrm{X} \star 4 \mathrm{~A} / 1+($
$=T \star m / 32-\mathrm{I}$ *T/24
l / S : K=F*M+1
h* $\mathrm{K}=\mathrm{F} \star \mathrm{M}+$
h* 1e4/1-(T+
, (S**E)/3e2
) $\mathrm{S}-\mathrm{x} \star \mathrm{d}-\mathrm{B} \star \mathrm{A}$;
$\mathrm{a}=2.63 / 1 * \mathrm{~d}$;
$\mathrm{x}+=(\mathrm{d} * 1-\mathrm{T} / \mathrm{s}$
* (.19*E +a
*. 64+J/1e3
) $-M^{\star} \mathrm{V}+\mathrm{A}^{\star}$
z) *_; $1+=$
$\mathrm{K} \star^{*}$; $\mathbf{w}=\mathbf{d}$;
sprinte (f
" 85 d 83d"
"\%7d", p =1
$11.7,(C=9 \mathrm{E} 3+$
$0 * 57.3$) \% 0550, (int) i) ; $d+=T *(.45-14 / 1 *$

 I-m 52+E*94 *D-t*. $38+\mathrm{u} * \cdot 21 * E) / 1 e 2+\mathrm{W} \star$ $179 \star \mathrm{v}) / 2312$; select ($\mathrm{P}=0,0,0,0, \& \mathrm{G}$) ; $\mathrm{v}-=$ $W \star F-T \star(.63 \star m-I \star .086+m \star E \star 19-D \star 25-.11 \star$
$) / 107 e 2) \star \quad D=\cos (0) ; E=\sin (0) ;\}\}$

Visualization is about stories

CARTE FIGURATIVE des pertes successives en hommes de l'Armée Française dans la campagne de Russie 1812-1813.
Dressée par M.Minard, Inspecteur Général des Ponts et Chaussées en retraite.

Part IV
Seeing

We are Visual Beings

70% of all brain inputs come through the eyes

We see with our Brain

- 3 types of memory to process visual information
- Iconic, the visual sensory register
- Short-term, the working memory
- (Long-term)

Iconic and Short-term Memory

Iconic and Short-term Memory

- Iconic Memory is a buffer that retains information for less than 1 second before passing it to short-term memory

Iconic and Short-term Memory

- Iconic Memory is a buffer that retains information for less than 1 second before passing it to short-term memory
- Perception of a limited set of attributes is very fast, automatic \& subconscious, therefore called pre-attentive

Iconic and Short-term Memory

- Iconic Memory is a buffer that retains information for less than 1 second before passing it to short-term memory
- Perception of a limited set of attributes is very fast, automatic \& subconscious, therefore called pre-attentive
- Short-term Memory processes information as "chunks"

Iconic and Short-term Memory

- Iconic Memory is a buffer that retains information for less than 1 second before passing it to short-term memory
- Perception of a limited set of attributes is very fast, automatic \& subconscious, therefore called pre-attentive
- Short-term Memory processes information as "chunks"
- Storage is temporary and of limited capacity (3-9 chunks)

Iconic and Short-term Memory

- Iconic Memory is a buffer that retains information for less than 1 second before passing it to short-term memory
- Perception of a limited set of attributes is very fast, automatic \& subconscious, therefore called pre-attentive
- Short-term Memory processes information as "chunks"
- Storage is temporary and of limited capacity (3-9 chunks)
- This explains why charts are more expressive than tables

Pre-attentive Attributes of Form

Orientation	Line Length	Line Width	Size
Shape	Curvature	Added Marks	Enclosure

Pre-attentive Attributes of Form

Pre-attentive Attributes of Form

Pre-attentive Attributes of Form

Shape
Curvature
Added Marks
Enclosure

Pre-attentive Attributes of Form

Shape
Curvature
Added Marks
Enclosure

Pre-attentive Attributes of Form

| | | | |
| - | | |
Curvature
Added Marks
Enclosure

Pre－attentive Attributes of Form

｜M⿰亻⿱口木⿴囗十｜｜｜｜｜｜｜｜｜：：：
｜｜｜｜｜｜｜｜｜｜
$|\square||||\mid \quad$ Added Marks Enclosure ｜｜｜｜｜｜｜｜｜｜

Pre-attentive Attributes of Form

Pre-attentive Attributes of Form

\square
$\square \square$

ㅁㅁ

The Polymetric View Principle

number of attributes

The X-Ray Eclipse Plugin

Part 1

Software Visualization++

The Class Blueprint

invocation and access direction

Detailing the Class Blueprint

Access
Invocation

Schizophrenia

Regular	\square Constant
Overriding	\square Delegating
Extending	\square Setter
Abstract \square	\square Getter

Wannabe

Gory Details

Where's the Beauty?

"Software is intangible, having no physical shape or size."

Thomas Ball, Stephen Eick
"Software Visualization in the Large"

In Computer, vol. 29, no.4, pp. 33-43, IEEE Computer Society Press, 1996

The Best Defense is Attack

How can we solve Ball's dilemma?

Metaphors..

"Habitability is the characteristic of source code that enables programmers, coders, bug-fixers, and people coming to the code later in its life to understand its construction and intentions and to change it comfortably and confidently."

Richard Gabriel
"Patterns of Software: Tales from the Software Community", Oxford University Press, 1998.

The City Metaphor

The City Metaphor

domain mapping

The City Metaphor

domain mapping	
classes	buildings

The City Metaphor

The City Metaphor

applications

applications

packages
classes
1,754
lines
112,495

ArgoUML’s filmstrip

The Time Machine

The Time Machine

time
1999-2007

ArgoUML Age Map

JHotDraw Fine-grained Age map

Time Travel + Age Map

October 2000
March 2001
September 2001
March 2002
August 2002
January 2003
July 2003
January 2004

JHotDraw

versions
8
time
40 months

Time Travel + Age Map

October 2000
March 2001
September 2001
March 2002
August 2002
January 2003
July 2003
January 2004

Time Travel + Age Map

October 2000
March 2001
September 2001
March 2002
August 2002
January 2003
July 2003
January 2004

Time Travel + Age Map

October 2000
March 2001
September 2001
March 2002
August 2002
January 2003
July 2003
January 2004

Time Travel + Age Map

Time Travel + Age Map

October 2000
March 2001
September 2001
March 2002
August 2002
January 2003
July 2003
January 2004

Time Travel + Age Map

October 2000
March 2001
September 2001
March 2002
August 2002
January 2003
July 2003
January 2004

JHotDraw
versions

Time Travel + Age Map

October 2000
March 2001
September 2001
March 2002
August 2002
January 2003
July 2003
January 2004

JHotDraw
versions

Displaying Design Problems

JDK 1.5 God Classes

Jmol's Feature Envy

Jmol's Feature Envy

ArgoUML_Model's Shotgun Surgery Map

CodeCity

codecity.inf.usi.ch

CodeCity

codecity.inf.usi.ch

Part VI
Epilogue

Reflections

Software Visualization is

Reflections

Software Visualization is
a means to make the intangible tangible

Reflections

Software Visualization is

a means to make the intangible tangible
not so difficult after all

Reflections

Software Visualization is

a means to make the intangible tangible
not so difficult after all
still in its infancy

Reflections

Software Visualization is

a means to make the intangible tangible
not so difficult after all
still in its infancy
an exciting research area

From here to..

Softuare Visualization 101 t

Michele Lanza

REVEAL @ Faculty of nformatics:
University of Lugano, Switzerdand
\%

