
The Return of the Son of ‘Working
Effectively with Legacy Code’

Michael Feathers
mfeathers @ objectmentor.com

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 2

Topics

  Global Mud
  Componentization
  Scopes of Replacement
  Explicitness of Seams
  Type Cruft
  ‘Tell, Don’t Ask’ and Testable

Design
  FP and Legacy Code
  Resurrecting Code
  Testability and Language

Design (TUC vs. TUF)
  Recoverability and Dynamic

Languages
  Salvage-ability
  The Joy of Legacy Code

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 3

Global Mud

  Once a large system gets too many global variables, it is hard to get rid of them
  The points of use for singletons are too scattered

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 4

Componentization

  Repository Hubs
  Factory Hubs

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 5

Scopes of Replacement

  In any large existing system you have to make pragmatic decisions about where you will break
dependencies:

  System
  Component
  Class
  Method

  Heuristic:
  Wide for coverage, Close for progress

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 6

Seams

A Seam is a place where you can alter behavior in your
program without editing it in that place.

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 7

Seams

  Seeing the seams

double perimeter(Point *polygon, int size)

{

 double result = 0;

 for (int n = 0; n < size; n++) {

 Point next = polygon [(n + 1) % size];

 result += distance (polygon [n], next);

 }

 return result;

}

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 8

Explicit Seams

  Favor explicit factoring for testing
  You may not be able to avoid hacks when first getting a system under test, but you are better

off when you eventually refactor to make your test seams explicit

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 9

Synergy Between Testability & Good Design

  Excessive setup indicates excessive coupling
  Slow tests indicate insufficient granularity or coupling to I/O
  The urge to test private methods indicates granularity issues
  Why

  Tests are a way of understanding code in a documentary fashion.
  Understandability is the essence of good design.

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 10

  A system is only as testable as its linkage with its base types
  Pervasive problem in C++, not quite so much in other languages. Everyone wants to redefine

the base types.
  Valuable system asset:

  Separation of “plain code” from frameworks and libraries.
  Hard to achieve

Type Cruft

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 11

  ‘Tell, Don’t Ask’ minimizes coupling
  It is often far easier to mock outward interfaces than inward interfaces

‘Tell, Don’t Ask’ and Testable Design

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 12

  There is an argument that you really don’t need unit testing in FP
  Pure code has no IO to mock

  Mocking can be useful for replacing computationally intensive bits or providing access to a
place where the effect of some code can be better sensed.

  Polymorphic calls are perfect for system recovery
  The functional alternative is parameterization

Functional Programming and Testability

pageWith :: (ListBoxModel -> ListBoxModel) -> (ListBoxModel -> ListBoxModel)
 -> ListBoxModel -> ListBoxModel

pageWith step select m@(Model _ w) = select $ (iterate step (select m)) !! windowSize w

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 13

  Refactoring tools help
  Wide disparity across the languages

  C#, Java - easy
  C++ - many issues
  C – easier than C++
  Niche static languages – insufficient tool support

  Extract Method and Extract Interface are key

Resurrecting Code

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 14

  Historically, language designers have not thought about the recovery case:
  Programmers will make mistakes.
  Entropy happens
  Recovery is an important language design consideration

  What is needed:
  Language level support for dependency injection
  Special access for tests (even intra-method)
  Awareness of TUFs and TUCs

Testability and Language Design

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 15

  TUF = Test Unfriendly Feature
  File IO, database access, long computation, message sink to external lib, etc

  TUC = Test Unfriendly Construct
  Static method, non-virtual function, constructor, static initializer blocks, new expressions,

singletons, special generics cases

The Cardinal Rule of Testability

“Never Hide a TUF within a TUC”

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 16

  Will we have less of a problem with dynamically typed languages?
  Explicitness
  The “No Lie” Principle – “Code should never lie to you”
  Ways that code can lie

  People can dynamically replace code in the source
  Addition isn’t a problem
  System behavior should be “what I see in the code plus something else” never “what I

see in the source minus something”
  Weaving and aspects
  Impact on the use of inheritance

  The Fallacy of Restricted Languages

Recoverability and Dynamic Languages

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 17

  How far can we go?
  The organic growth metaphor

  Architecture is more fixed than we expect
  Business logic is often “glued to the edges”

  Selective rewrite of logic is often easier than replacing architecture
  Technologies do make a difference (type cruft, build issues)
  The challenge is in making work within existing systems faster and more deterministic

Salvage-ability of Systems

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 18

  What should our stance be?

Reframing Legacy Code

