
Dynamic in a World of StaticDynamic in a World of Static
Dynamic Binding in C# 4.0

Mads Torgersen, C# Language PM

The MenuThe Menu

� The Dynamic Language Runtime

� Dynamic in C#

� Demo

BackgroundBackground

Common Language Runtime (CLR):

� Common implementation platform for
static languages

BackgroundBackground

Common Language Runtime (CLR):

� Common implementation platform for
static languages

BackgroundBackground

Common Language Runtime (CLR):

� Common implementation platform for
static languages

� Good interop� Good interop

BackgroundBackground

Dynamic Language Runtime (DLR):

� Common implementation platform for
dynamic languages

� Good interop� Good interop

BackgroundBackground

Dynamic Language Runtime (DLR):

� Common implementation platform for
dynamic languages

� Good interop� Good interop

� Enable programmatic dispatch

Why C# dynamic?Why C# dynamic?

� C# is not a dynamic language

◦ And will never be

� Embrace dynamic world

◦ Build on DLR opportunity◦ Build on DLR opportunity

◦ Use code from dynamic languages

◦ Use other dynamic object models

◦ Better COM interop

Dynamic Language RuntimeDynamic Language Runtime

Dynamic Language Runtime

Expression TreesExpression Trees Dynamic DispatchDynamic Dispatch Call Site CachingCall Site Caching

IronPythonIronPython IronRubyIronRuby C#C# VB.NETVB.NET Others…Others…

PythonPython

BinderBinder

RubyRuby

BinderBinder

COMCOM

BinderBinder

JavaScriptJavaScript

BinderBinder

ObjectObject

BinderBinder

Expression TreesExpression Trees Dynamic DispatchDynamic Dispatch Call Site CachingCall Site Caching

Terminology: Dynamic BindingTerminology: Dynamic Binding

� Binding:
Determining the meaning of an operation
based on the type of constituents

� Static binding:� Static binding:
Binding is based on compile time (static)
types of expressions

� Dynamic binding:
Binding is based on runtime (actual) types
of objects

Binding not typingBinding not typing

� Dynamic binding enables programmatic
interop

◦ Connect different worlds by mapping actions,
not types

� Dynamic typing is a consequence, not a
feature

SyntaxSyntax

� Knee-jerk: It’s got to look different!

◦ Safety first

� Secret dream: It’s got to look similar!

◦ Comfort first◦ Comfort first

SyntaxSyntax

� Explicitly dynamic operations:

object d = GetDynamicObject(…);

string result = ~(string)d~[d~.Length ~- 1];

� Ugh…

�

� Ugh…

SyntaxSyntax

� Dynamic contexts:

object d = GetDynamicObject(…);

string result = dynamic((string)d[d.Length - 1]);

� Everything is dynamic inside

�

� Everything is dynamic inside

◦ A static context as well to opt out with?

◦ A whole different dialect of C# inside

◦ You lose sight of big contexts

SyntaxSyntax

� Contagious bit on expressions:

object d = GetDynamicObject(…);

string result = (string)d[dynamic(d).Length - 1];

� Something is dynamic – but what?

�

� Something is dynamic – but what?

◦ Rules of propagation?

◦ factoring out subexpressions?

SyntaxSyntax

� Dynamic type:

dynamic d = GetDynamicObject(…);

string result = d[d.Length - 1];

� Pro: there’s no difference!

☺

� Pro: there’s no difference!

◦ Easy to see what the code does

� Con: There’s no difference!

◦ No local indication that it is dynamic

Why is this OK?Why is this OK?

� “Safety” about throwing exceptions

◦ Member access already throws exceptions

� You already need types to guess meaning

� This is for making unsafe, error prone, � This is for making unsafe, error prone,
bloated code less so

Dynamically Typed ObjectsDynamically Typed Objects

Calculator calc = GetCalculator();

int sum = calc.Add(10, 20);

object calc = GetCalculator();

Type calcType = calc.GetType();

object res = calcType.InvokeMember("Add",

BindingFlags.InvokeMethod, null,

new object[] { 10, 20 });new object[] { 10, 20 });

int sum = Convert.ToInt32(res);ScriptObject calc = GetCalculator();

object res = calc.Invoke("Add", 10, 20);

int sum = Convert.ToInt32(res);

dynamic calc = GetCalculator();

int sum = calc.Add(10, 20);

Statically typed to
be dynamic

Dynamic method
invocation

Dynamic
conversion

Type or Type Modifier?Type or Type Modifier?

� Generality:
dynamic Foo d = GetDynamicFoo(…);

◦ Static binding of Foo’s members

◦ Dynamic binding of the rest �Dynamic binding of the rest

� Simplicity:
dynamic d = GetDynamicFoo(…);

◦ Dynamic binding of all members

◦ Even those on Object

☺

Dynamic binding when?Dynamic binding when?

� When the receiver is dynamic?

◦ What to do when arguments are dynamic?

dynamic result = Math.Abs((double)d);

◦ Forces you to choose a type
�

Forces you to choose a type

� When any constituent expression is
dynamic!
dynamic result = Math.Abs(d);

�

☺

Result typeResult type

� Dynamic type:

◦ Method call Math.Abs(d)

◦ Invocation d(“Hello”)

◦ Member access d.Length◦ Member access d.Length

◦ Operator application 4 + d

◦ Indexing d[“Hello”]

� Static type:

◦ Conversions (double)d

◦ Object creation new Foo(d)

Runtime BindingRuntime Binding

� C# runtime binder

◦ Handles binding of “ordinary objects”

◦ Mimics compile time semantics

� IDynamicMetaObjectProvider� IDynamicMetaObjectProvider

◦ Implemented by dynamic objects

◦ Handle their own binding

Runtime Binding SemanticsRuntime Binding Semantics

� Constituents typed dynamic:

◦ Use their runtime type

� Statically typed constituents:

◦ Use their static type◦ Use their static type

◦ Use other static info like literalness

� Principle of least surprise:

◦ How dynamic do you want to be today?

dynamic means
“use my runtime type for binding”“use my runtime type for binding”

Demo…Demo…

