
Styling your Architecture in an

Evolving Concurrent World

JAOO Aarhus, October 5th, 2009

Erlang Training and Consulting Ltd

Francesco Cesarini
francesco@erlang-consulting.com
@FrancescoC

counter_loop(Count) ->

receive

increment ->

counter_loop(Count + 1);

{count, To} ->

To ! {count, Count},

counter_loop(Count)

end.

Erlang

Erlang Forces a Mental Adjustment

Tim Bray, Director of Web Technologies – Sun Microsystems:

Copyright 2008 – Erlang Training and Consulting Ltd

Erlang Forces a Mental Adjustment

After you’ve opened the top of your head, reached in and

turned your brain inside out, this starts to look like a natural

way to count integers. And Erlang does require some fairly

serious mental readjustment.

Copyright 2008 – Erlang Training and Consulting Ltd

Erlang Forces a Mental Adjustment

After you’ve opened the top of your head, reached in and

turned your brain inside out, this starts to look like a natural

way to count integers. And Erlang does require some fairly

serious mental readjustment.

However having spent some time playing with this, I tell you...

Copyright 2008 – Erlang Training and Consulting Ltd

Erlang Forces a Mental Adjustment

If somebody came to me and wanted to pay me a lot of money

to build a large scale message handling system that really had

to be up all the time, could never afford to go down for years

at the time, I would unhesitatingly choose Erlang to build it in.

Tim Bray, OSCON 2008 Tim Bray, OSCON 2008

Copyright 2008 – Erlang Training and Consulting Ltd

Program for the correct case - Patterns

� Describe the expected – crash on erroneous input

� Infrastructure handles recovery

factorial(N) when is_integer(N), N > 0 ->

N * factorial(N-1);

factorial(0) ->

1.

area({square , Side}) -> Side * Side;

area({rectangle, B, H}) -> B * H;

area({triangle , B, H}) -> B * H / 2.

Copyright 2008 – Erlang Training and Consulting Ltd

Program for the correct case - Supervisors

� Robust systems can be built

using layering

� Program for the correct case

One-for-one

One-for-all

Rest-for-one

Escalation

Copyright 2008 – Erlang Training and Consulting Ltd

Handling sockets in Erlang

Static process opens
listen socket

Spawns an acceptor
process

Acceptor receives
incoming

Acks back to socket
owner

New acceptor is
spawned

Replies sent directly to
socket

listen()

spawn(connector())

done

Copyright 2008 – Erlang Training and Consulting Ltd

Middle-man Processes

� Possible because of light-

weight concurrency

� Normalizes messages

� Main process can pattern-

match on messages

� Keeps the main logic clear

spawn_link(PidA, PidB) ->

spawn_link(fun() ->

loop(#state{a_pid= PidA,

b_pid = PidB})

end).

PidA MM PidB
XML Int.

await_negotiation(State) ->

receive

{From,

{simple_xml,

[{"offer", Attrs, Content}]}} ->

HisOffer =

inspect_offer(Attrs, Content),

Offer = calc_offer(HisOffer, State),

From ! {self(), Offer};

…

end.

loop(#state{a_pid = PidA, b_pid = PidB} = State) ->

receive

{PidA, MsgBin} when is_binary(MsgBin) ->

{simple_xml, _} = Msg = vccXml:simple_xml(MsgBin),

PidB ! {self(), Msg},

loop(State);

{PidB, {simple_xml, _} = Msg} ->

Bin = vccXml:to_XML(Msg),

PidA ! {self(), Bin},

loop(State)

end.

MMMM
MM

Copyright 2008 – Erlang Training and Consulting Ltd

Erlang Bends Your Mind...

� Processes are cheap and plentiful!
� When you need a process – just create one!

� Don’t ration processes – use exactly as many as you need

� No need for thread pools – reusing processes is really a pain!

� Message-passing is cheap!
� Use processes to separate concerns

� Middle-man processes useful for transforming data

� Processes can monitor each other
� Enables out-of-band error handling

� Use Concurrency as a Modelling Paradigm!

Copyright 2008 – Erlang Training and Consulting Ltd

Language Model Affects our Thinking

� Three state machines described as one

� Implies a single-threaded event loop

� Feels wrong to an Erlang programmer

state event action next state

...

I-Open Send-Message I-Snd-Message I-Open

I-Rcv-Message Process I-Open

I-Rcv-DWR Process-DWR, I-Open

I-Snd-DWA

I-Rcv-DWA Process-DWA I-Open

R-Conn-CER R-Reject I-Open

Stop I-Snd-DPR Closing

...

Example: RFC 3588 – DIAMETER Base Protocol

Transport FSM

Handshake FSMc

Service FSMc

Copyright 2008 – Erlang Training and Consulting Ltd

ClientClient

ServerServer

DIAMETER, Erlang-Style

AAA

Transport FSM

•Handles heartbeat

logic (RFC 3539)

Hand-

shake

Service

Service FSM

•Request routing

•Failover

•Retransmission

Handshake FSM

•Capabilities exchange

•Leader election

•Only active during handshake

Client

Server

Dynamic request handler

•One per request

Copyright 2008 – Erlang Training and Consulting Ltd

What is the AXD301 Switch

A Telephony-Class, scalable (10 –

160 GBps) ATM switch

Designed from scratch in less than

3 years back in 19961996

Erlang: ca 1.5 million lines of code
� Nearly all the complex control logic

� Operation & Maintenance

� Web server and runtime HTML/

JavaScript generation

Copyright 2008 – Erlang Training and Consulting Ltd

AXD301 Concurrency Modeling

Model for the natural

concurrency in your problem

In the old days, processes were

a critical resource
� Rationing processes led to complex and

unmanageable code

Nowadays, processes are very

cheap: if you need a process –

create one!

Example: AXD301 process model

1st prototype:

6 processes/call

2 processes/call

1 process/all calls

2 processes/

call transaction

4-5 processes/

call transaction

Copyright 2008 – Erlang Training and Consulting Ltd

AXD301: 1+1 Redundancy – Good ol’ Telecoms

Data path

Control signalling

Device board

Control plane

User plane

Active Standby

Stable-state

replication

~ 70 000 sessions

per processor pair

No ongoing sessions

lost at “failover”

Copyright 2008 – Erlang Training and Consulting Ltd

16

eTunnel eTunnel

Back-EndFront-End

Firewalls

Firewalls
Load

Balancers
Load

Balancers

Transaction

Client InterfaceClient Interface

RESTful APIsRESTful APIs

XML HandlingXML Handling

JSON Encoding/DecodingJSON Encoding/Decoding

SMPP HandlingSMPP Handling

HTTP ServersHTTP Servers

Socket HandlingSocket Handling

Server ConnectivityServer Connectivity

Remote Banking SystemsRemote Banking Systems

Mobile OperatorsMobile Operators

IM ProvidersIM Providers

Email ServersEmail Servers

Today: 2-Tier and 3-Tier architecture

Copyright 2008 – Erlang Training and Consulting Ltd

What is the Third Party Gateway?

� Third Party Bulk Mobile Terminating SMS
� Spam, Free traffic updates, etc

� Premium Mobile Terminating SMS
� Ring tones, stock quotes, chargeable SMSes, etc

� Receive Mobile Originating SMS
� Short Codes, TV Votes, etc

Copyright 2008 – Erlang Training and Consulting Ltd

TPG: No Shared Data

Nortel

iSD-SSL

Transaction node

Reply node

Real time

cust db

Prepay Db

SMSC
Third Parties

HTTPS

HTTP

HTTPS

MT-SMS

MO-SMS

Logs db

(1 TB)

Public node

(yaws)

Public node

(yaws)

Public node

(yaws)

HTTP

FrontFront--EndEnd

TransactionTransaction

BackBack--EndEnd

Copyright 2008 – Erlang Training and Consulting Ltd

What is the Mobile Messaging Gateway?

�Mobile Instant Messaging and Email Gateway

�Connecting to public and private communities

Copyright 2008 – Erlang Training and Consulting Ltd 20

eTunnel eTunnel

MMGS: Fully Replicated Data

Copyright 2008 – Erlang Training and Consulting Ltd

MMGS: Fully Replicated Data

� 100,000 connected users, 3,000 IM Transactions Per Second

� 1 Transaction consisted of
� 3 HTTP Requests

� 2 DB entries distributed across the cluster

� 3 destructive DB operations using Mnesia
� (Replicated on 3 nodes = 9 destructive Operations)

� 10 audit log entries written to file

� Overloaded before reaching 100% CUP
� I/O Starvation

� TCP/IP congestion

� Mnesia Replicated Database

Copyright 2008 – Erlang Training and Consulting Ltd 22

eTunnel eTunnel

MMGS: Minimal Shared Data

Copyright 2008 – Erlang Training and Consulting Ltd

MMGS: Minimal Shared Data

�150,000 connected users, 12,600

Transactions Per Second

�Sustained loads of 45,000,000

messages per hour

� 24 hour periods

�60% CPU utilization

12,6003,000ThroughputThroughput

150,000150,000Connected Connected

UsersUsers

MinimalMinimal

SharedShared

DataData

TotalTotal

SharedShared

DataData

Copyright 2008 – Erlang Training and Consulting Ltd

MMGS: No Shared Data

� 50,000 connected users

� 4,200 Transactions/Second

� On a cluster 1/3 the size.

� Linearly Scalable

� Login throttle on fail-over

and take-over

12,60012,6003,000ThroughputThroughput

150,000150,000150,000Connected Connected

UsersUsers

No No

Shared Shared

DataData

MinimalMinimal

SharedShared

DataData

TotalTotal

SharedShared

DataData

Copyright 2008 – Erlang Training and Consulting Ltd

The Cloud, to us old-timers

� Software as a Service
� Access program and data from anywhere, using any device

� Hardware as a Service
� Access computing resources as-needed, without owning a data centre

� Virtualization

� “Resolving the tensions between

the end-user and the data centre”
� Power vs. Accessibility

� Powerful clients vs. Ease of deployment

� (Google VP Vic Gundotra @ Google I/O Keynote 2008)

Copyright 2008 – Erlang Training and Consulting Ltd

Build a 5-nines scalable

web server based on AXD 301

Two Erlang-related

Innovation Cell proposals

presented at the same time

The Cloud, to us old-timers

Eddie – An Ericsson-sponsored Open Source web server cluster framework 1999

Copyright 2008 – Erlang Training and Consulting Ltd

The Cloud infrastructure is Erlang…

Communication In The CloudCommunication In The Cloud

� RabbitMQ

� EjabberD

� Disco Project

� Nanite

� Proprietary TCP/IP Middleware

� Distributed Erlang

Data duplication in the CouldData duplication in the Could

� Mnesia

� CouchDB

� Dynomite

� Simple DB

� Scalaris

� Riak

Copyright 2008 – Erlang Training and Consulting Ltd

The Cloud infrastructure is Erlang…

Are we there yet?Are we there yet?

Copyright 2008 – Erlang Training and Consulting Ltd

More Information

www.erlang.org

www.erlang-factory.com

Erlang Programming

Copyright 2008 – Erlang Training and Consulting Ltd

Thank You!Thank You!

