il avre plite

TRIFORK

Actors —

Towards Object Oriented
Modeling of

Concurrent Systems

Kresten Krab Thorup, Trifork
Dave Thomas, Bedarra

A Talk in Two Acts

ACT I, in which Kresten speaks on

Modeling Concurrency with Actors

Acrt 11, in which Dave explains

The Actra Programming Model

TRIFORM

What factors increase our

Capacity for Complexity?

A. Our system’s ability to perform and
scale as problem size grows.
B. Our ability to understand and

reason about Sys tems

as they grow big.

I'm an
intuitive
persom...

T performance / scaleability
2 =
f " understandability condtieremey
< b oddbliam?
2 7
%
-
= objelymanented
& virtmddeliokines
3
. >
fime
Concurrency Landscape
Explicit / Implicit /
Reactive Functional

Here we need to
understand and
reason about
parallelism

Here, we
abstract the
parallelism
away

Concurrency Landscape
Explicit / Fonplicit 7
Reactive

Distributed Telephone Systems
Trading Systems

Erlang / CORBA
Message Middleware

This area has big
potential to change
programmers every-day
life for the better!

GUI-applications

Google/Hadoop
Control Systems

Map-Reduce

Data-Parallelism

Threads

“Thinking Tools” of
Object-Oriented Modeling

objects with identity,
classes with specialization,
virtual methods,
... and patterns.

TRIFORX

Conceptual Model for
Object-Orientation

support / \emulatc

Object-Oriented

Languages But all of the 00
objects
are concurrency
ignorant.
Where is the
Conceptual Model for

Concurrent Object-Oriented
Programming?

Concurrency Mechanisms

Runtime Patterns
Threads, Processes, =
Semaphores, Locks, B

Monitors, Condition
Variables, Data-Parallelisiy

Formalisms

CSP, rt-calculus,
concurrent linear logic, ...

But -
These are
mechanisms and
techniques, not a
conceptual
model

TRIFORX

Actors
have the potential to provide
an OO concepp>~1=agdel

...and can help
generating more
concurrent work

for cong

Some Actor Systems

® C.E. Hewitt's actor model [Hewitt, 1977

® SAL (Simple Actor Language) [Agha, 1986]
® ABCL/] [Yonezawa, 1986]

® Concurrent Smalltalk [Tokoro, 1986]

® Actra Smalltalk [Thomas, et.al., 1989]

® Irlang [Armstrong, 1988]

® Clojure [Hickey, 2008], Kilim, ...

TRIFORM

An actor model...

® Is a conceptual model for time/state
management

® [s a conceptual model for
computations and their concurrent
execution

® Mechanisms for abstraction and
composition

Actor Essentials...

client actor

message

—_—

behavior

*state
#.. shared .%-
immutable
values

Some More Systems

® Scala has a nice framework for
programming with actors.

® Kilim, Jetlang, Actors Guild, and
Actor Foundry, ... are frameworks for
actor programming in Java.

® Axum is an actor language based on C#.

TRIFORM

Understanding Learning by
Poing: Pon't Pissect
Actors the Frog, Build 1.

® To really understand actors,
I wrote a simple actor framework for
Java.

® Each “actor” has an interface, and a
behavior that implements that interface.

® The framework creates a proxy that
implement the interface and dispatches via

a thread pool...

Java Actor Framework

client

xnterfacen cabstract cdlasse

Logger [ActorBehavior

[Thread Pool |

TRIFORN

Java Actor Framework

// the actor's intarface
interface Logger

vold log(8tring val);
]

J/ ...and it's behavior

class LoggerBahavior extands ActorBehavior<Logger> {
void log(String val) { System.out.printin(value); }

}

// ... then use it like this...

Logger logger « new LoggerBehavior().actor();

loggerlog(“Something happened™);

TRIFORM

Issues with this approach

Sharing. If an actor receives a reference to
a shared object then multiple actors/threads
may mutate that object concurrently.

Threads. If an actor blocks during it's

operation, it is holding a precious resource,
namely a thread.

Concurrency. If the actor’s methods returns
a value, then the client will block, or what?

Asynchronous Replies

// the actor's intarface
interface Logger |

ReplyBource< getStatus();
}

These two correspond

class x,u/garnamlor extends ActorBehavior<Logger> |
String getStatus() | return (Compute Status); |
}

TRIFORN

Asynchronous Replies

// ...then use it like this...
Logger logger - new LoggerBehavior() actor();

// get a “future” for the status response
ReplySource<String> future « logfer getStatus();

// try to get the response
Btring status =« future get();

TRIFORM

interface ReplySource<T> extends Future<T>(

}

interface ReplySink<T> (

)

interface ReplyPipe<IN OUT> extends

}

Asynchronous Replies

T get();
void sendTo{ReplySink<T> sink),

void put(T value);

ReplySink<IN> ReplySource<QUT> |

Asynchronous Replies

// the actor's intarface These two correspond
interface Logger { /

ReplyBource<String> getStatus(}
}

class LoggerBehavior extands ActrBehavior<Logger> {
vold getStarus(ReplySink<String> sink){
sink.put ((Compute Status));
s CONLNLE COMPULALION ..o
}
}

TRIFORN

Recursive Factorial

factorial (from, to)
switch(to-from) {
case 0O: return to;
case 1: return to* from;
default:
mid = (from+to)/2;
return factorial(from, mid)
* factorial(mid+1, to);
}
}

factorial (1, 20);

TRIFORM

Recursive Factorial

interface Factorial {
ReplySource<Long> compute(long from, long to);
}

// compute factorial(4)

Factorial fac = new FactorialBehavior().actor();
ReplySource<Long> value = fac.compute(l, 4);
System.out.println(value.get());

fac(l..4
¢ put([2,121)
[Maultiplier]
result 3
put(24)
7
&
interface Reducer<T> extends
ReplyPipe <List<T>, T> |
o
Reducer<Long> multiply() {
return new ReducerBehavior() {
Long reduce(Long(] vals) { return vals[0] * vals[1]; }
}-actor(};
]
N \/
Hjducer<Long> mul = multiply();
joln(fst, second).sendTo(mul);
mul.sendTo(sink)
3
}

TRIFORM

Kilim Framework

Sharing: The Kilim framework rewrites

and validates Java byte code to check this.
Object references become null in the
sender’s context.

Threads: Kilim rewrites the actor behavior
to CPS (continuation passing style),
permitting actors to “suspend” without
holding a thread.

Scala Actor Framework

Sharing: Scala makes it easy to write
immutable classes/values, but there is no
mechanism to guarantee avoiding sharing.

Threads: Scala provides for a model in
which you avoid having threads for idle
actors, but blocking operations have same
issues as “my” framework.

TRIFORN

® An Actor Model needs to address
® Resources
® Sharing
® Asynchronous Messaging
® But also (patterns for) ...
® Composition,
® Abstraction, and
® Coordination.

Encapsulation & Comp "

Abstraction

® Some actor languages have
reflection (ABCL/R® family), or
higher-order actors (Erlang), i.e., actors
that produce or consume actor behaviors.

In Erlang, an actor behavior is simply a
function.

® These mechanisms are very powerful for
creating control structures, and meta-
programming for actors.

TRIFORN

Coordination

® Actors don't easily provide for
coordination or transaction-like
behavior. ... all those asynchronous
messages are rather slippy!

® In many cases, you have to write the
coordination code explicit]

As far as | can
see, this is a sore
point for actors.

® Many research projects
this, e.g. [Frelund96, C

Actor Patterns

® Active Object, Pipes- 08 B2l -
=

and-Filters =) ERm/ e
® All of Gregor's
Integration Patterns
[Messaging] most of these are
® Anthropomorphic =1 building blocks for
Patterns g=| conmcurrent /
parallel systems

Act I1

Anthropomorphic Programming and the
Actra Model

Using Structured Concurrency for
Real-Time Embedded Systems,
Service Oriented Computing and Agent Base
Collaborative Analytics

Bechrrs Ressarch Labs Lad

Message Based OS Kernels -
Thoth, QNX, Harmony, V-Kernel...

Thoth was the archetype (U Waterloo in the late 1970'5)
Many descendants including QNX, V Kernel, Harmoay ..
¢ Unusual messaging primitives force an anthropomorphic style

¢ Blocking Send

¢ Blocking Receive
¢ Noa Blocking Reply
¢ Harmony RTOS offered a very robust and stable implementation
* Portable real-time multi-tasking multi-processing kernel
¢ Interrupes unified with messaging model
e Light weigh: threads

e Common interface for local and remote tasks

Bechrrs Ressarch Labs Lad

Anthropomorphic Style

Competations are erganized in persenifiec roles o
® Managers Administrators, Workers, Couriers, (za) o
and Nozifiers. . — 2 @
* Each of these have well known pre-defired & -_;. —
semantics which can be subciasses for specifc v
applications &) o @
® Servers(Managers) must be responsive, so T g, =

celegate most of the wark

e Spend mest of their lde in 3 “roceve any” loop
wazing for work

Moss compasation dane by Warkers

W. Merven Genteman, " ™Message Passing Between Sequentad Frocesses: the
Reply Primizive and the Administratar Concept”,
Software Practice and Experience,Vol. |1, Pp 435485, | 581,

Becrrs Ressarch Lats Lad \

Actra Actors
First Class Active Objects

Actra adds a new Class called Actor
* Replaces weak Soallinlk co-routive process model
* Light weighs i which sbare memory oo differsar processan
* Froweves ohpect meuage sensancs - Hacking seed, blocking recene
* Machod retarn execates implice o explcn noa-tlockang reply
Actra style very natural for Smalltalk programmers
. -'\Ct‘ln can be lt.'b:lmﬂ mll Cl:uah"fuf to rexze cancusrrent CClmi’uwm

® Actars an uzwmpecting soquestial programmer to transfoem their programa into a
structured concurrent pragram Le. Switching activepasseve roles didn't affect most
of the code

Implementation
MT/MP Szalltalk cn VME Bus Shared Memooy MP
MT/MP Scavenging GC, Diviributed and Persovies: GC
MT/MP Services prenaded by Harmoay RTOS

Bechrrs Ressarch Labs Lad

Actor Taxonomy

Firez Class Active Components which encapsulates a ses of state and behavior
together with a thread of control

Anthropomorphic Programming - Chents, Servers, Agents, Managers,
Secretaries, Couriers, Workers, Notifiers
Generic Actors
o Wvker TEPOIT 15 DATALONS 10 P ranmn SO pratanan
o Nayber: event harding Worker
& Conmen/Sacriony meweager Worker caed for delegation and communication
o Dromsactor: adde ACLD propermies to compatation
* Server: provides services — clocka, actor direciony
o Sraprator. MUBAES CROUTON, THMEAOS ACCRRA
* Adewsutrator: manages worker poal

o Jhssetcher: provades maymcbroroes commrurication rpecally encepsalatng & queue ard
azaze machine

¢ Bunmens Prooowes « Workflow + Rules « Control (e Tpdor engom)

/ v« MActor where methods are nference rules
o Aprwis « M 5 L)

* Anter » Acror where neshod e sonpe and dinplay O wess OpeaGLL ecc.

Bechrrs Ressarch Labs Lad

AMEP System Architecture

(T* " :l vania /\
| PREFROCESSOR | e Pachens
RN

Dwa
Fachann

Mergedipin
Beguesis

Usiasen
I L

/\ Emitner Srnenas
o.-‘v-'

(Commant
. Emitmr Sitnarion

t.-../ f .

Data Courler

m’am ReceiveinawData)
oy 3

Sorter Task Dispatcher Task
Acquisition Task

PulseCourier and Acquisition methods

initial Task
wipar
sl
bual

usistecloce
sintecleoce found by Tulse T
ualinterface assigrfiaffecior: aelf parent.
ectivily
“Got cata axd deliver it to Aoguisition

palses
trie Wallelrie
palaes = asintezfoce palsealoc: se.f pacent

alf zareas reawlata: palaes

tielTasx
“ al? spawn: Pulselocrier.
= self spaws Dlapate

¥ apaxn: Soxter

checPoady

Actra Summary

Good News
« Works very well on unsuspecting sequential programs
. A g e, .
« Good modeling vocabulary/library for strectured concurrency

« There are no hidden queues! Cycles are visible by inspection of the
message send graph

Bad News

* Sharing state requires every object to have an awner (no longer expensive
but used to be)

* Shared Collections heg for immuzable collections!
* Write barrier scalability esp. across distributed system

* Multi-core and distributed likely required call by value and == by hash

Bechrrs Ressarch Labs Lad

Thank you

TRIFEORK Sadarra Ressarch Labe Lod

An actor’s
behavior can

® Perform computation, if-then-else, ...
® Create new actors,
® Send messages to other actors

® Specify that the next message should be
processed with a different behavior.

TRIFORM

Message processing

® Messages are processed asynchronously:
“send” starts a new processing task.

® [n Agha's actor model, a message task can
start when either

1. The previous behavior completes, or
2. A replacement behavior is given.

which ever comes first.

mail queue i,
HOW acfor |
/
behavio
a=newlY I
send ctoa

>
become X, ;

TRIFORN

Two things that
introduce concurrency

® Message send, lets the receiving actor start
processing concurrently.

® Become, lets the actor process the next
message concurrently.

TRIFORM

A simple cell

behavior cell(value)[msg] =
if msg = (FETCH, client) then
send value to client
if msg = (STORE, value:) then
become cell(value:)

x = new cell(0)
send (STORE, 1) to x

