code://Rubinius/technical

/GC, /cpu, /organization, /compiler

Evan Phoenix



EnGine
Uard

weeee!!

Evan Phoenix



Rubinius

® New, custom VM for running ruby code
® Small VM written in not ruby

® Kernel and everything else in ruby

Evan Phoenix



http://rubini.us
git://rubini.us/code

van Phoenix



http://rubini.us
http://rubini.us

User

Kernel

VM




VM Services

® ObjectMemory
® Generational GC
® Virtual CPU
® Custom Instruction Set

® Primitive operations

Evan Phoenix



ObjectMemory

® Allocation
® Variable sized objects

® Opaque objects

® Accurate collection of all garbage objects

® No C stack / register walking

Evan Phoenix



Object Layout

Number of fields

Class Pointer

Variables sized

Number of fields indicates how many

Evan Phoenix



Object Flags

® Used by GC

® Forwarded, Remember, Mark,
ForeverYoung

® Allow for opaque objects
® StoresBytes

® Allow for weak references

® RefsAreVWWeak

Evan Phoenix



Opaque Objects

® Allows GC to raw bytes

® ByteArray class used by String primary is

the example

® Allows GC to store C structs

® Used by VM to implement some objects

® MethodContext, SendSite, etc.

Evan Phoenix



Generational

® Young object space (YOS) uses Baker/
Cheney copy collector

® Made simple using accurate collection

® Mature objectp space (MOS) uses simple

mark/sweep collector

® Write barrier keeps GC sane

Evan Phoenix



WVrite Barrier

® Piece of C code run everytime an object
reference is stored into another object

® Allows the VM to be sure it knows all
objects that point into YOS

® Allows GC to collect YOS independently

Evan Phoenix



Allocation Steps

® YOS has 2 halves
® YOS current half tried first

® f fails, use other half

® if fails, use MOS (never fails)

Evan Phoenix



Accurate Collection

® VM is able to see every object reference in
system

® Makes copy collector possible

® Collection is only performed at ‘safe points’

® Only one defined currently

® At a safe point, there are no hidden object
references

Evan Phoenix



No Platform Specific
GC code!

van Phoenix




/cpu

Evan Phoenix



Virtual CPU

® ‘bytecode’ interpreter

® ‘registers’ provide ability to implement

flow control

® Uses some techniques to improve
performance

® Direct threading, integer opcodes

Evan Phoenix



Instructions

| 14 instructions

Instructions created as nheeded

Each instruction is 4 bytes (a 32bit integer)

Allows for up to 2 operands, defined
statically per instruction

Most are flow control related, very few
manipulate objects directly

® Differs from Java in this way

Evan Phoenix



MethodContext

First class ‘stack frame’ objects

Contains all information about the current

of a method

Data is copied between a MC and the CPU

when the MC is run

If new MC is created, information in CPU is

copied back to original MC

Evan Phoenix



def silly
a =3
mc = MethodContext.current
mc.locals[0] = |8
pa#=>18

end

Evan Phoenix



def evil_and_silly
a =3
mc = MethodContext.current
mc.locals[0] = |8

end

def poor_parent

a —

evil_and_silly()

pa#=>18
end

Evan Phoenix



Spaghetti Stack

The ‘call stack’ is a linked list

Each MethodContext has a field call sender

Each sender points to the MC to restore

when this MC returns

Toplevel MC has nil sender, causing the VM

to exit.

Evan Phoenix



Task Objects

Some ‘registers’ of the CPU are global, i.e.

not stored in each MC

These are saved and restored from Task

objects

Each Task object represents the complete

state of the CPU

Used as the muscle in the Thread and
Continuation classes

Evan Phoenix



Primitives

Basic operations that the VM provides

Most are simple chunks of code with fixed

number of arguments and one return

Some reconfigure the CPU in a new way to

provide unique functionality
Hooked up to a method using syntax

Can succeed or fail

Evan Phoenix



Hooking Up

class Fixnum
def +
Ruby.primitive :fixnum_add
end
end

primitive in the CompiledMethod object

® Compiler detects syntax and saves the name of the

Evan Phoenix



Simple - fixnum_add

ARITY(I);

GUARD(FIXNUM P(self));

OBJECT tl = stack pop();

if (FIXNUM_P(tl)) {
stack push(fixnum_add(state, self, tl));
return TRUE;

} else {
return FALSE;

J

Evan Phoenix



Primitive Failure

implementation, or fail.

class Fixnum
def +(other)
Ruby.primitive :fixnum_add
raise “damnit!”
end
end

® Code after Ruby.primitive is run, allowing
the method to try again, provide a different

Evan Phoenix



® |mplemented using a couple of primitives

® Allows Ruby code to bind and directly call

C functions

® Automatically converts between Ruby and

C types

FF

Evan Phoenix



module OutsideRuby

attach_function ‘strlen’, [:string], :i

end

str = “hello denmark”
p OutsideRuby.strlen(str) # => |3

Nt

Evan Phoenix



® Allows for faster development of methods
tied directly to native libraries

® getpwnam, socket, etc.

Evan Phoenix



Threads

® Similar to |.8

® Green threads built on Task objects
® Preemption based on simple timer
® API directly to VM thread scheduler

® Channel objects provide scheduler
notifications

Evan Phoenix



methods

Dispatch

® |argest amount of time spent in calling

® Any performance benefits have big pay offs

Evan Phoenix



Caching

® Finding the correct method takes the most

time

® Caching provides ways to shortcut
searching

® Multiple layers of caching

Evan Phoenix



Global Cache

® For each send, the class and method name

are hashed

® Hash value is clamped and used as index

into large table

® Value is validated and used

Evan Phoenix



Send Site Cache

® Each place where a method is performed is
called is called a send site

® Observations about code usage find
Interesting patterns

® Most code is NOT polymorphic

® Each time a method is called, self,
arguments, and locals are the same ‘type’

Evan Phoenix



® |nitially, send site is empty

® Causes the global cache to be consulted

® |nformation within the send site is
updated

® Next time send site is used

® |[nformation contained within is validated

and used directly

Evan Phoenix



Locality

® | ocality contains very rich information

® Any exploitation of locality can increase

performance

® Java’s Hotspot uses locality as the primary

exploitation mechanism

Evan Phoenix



Other VM operations

® Ability to directly save, load, and execute
a .rbc file

® Simple multi-VM spawn and communication

® Basic abilities to manipulate builtin classes
such as Hash, Array, etc.

Evan Phoenix



Division of Ruby Code

van Phoenix




Kernel-land

® All ruby code located in kernel/
® VM loads code directly without require
® Phase order: bootstrap, platform, kernel

® | oad order of .rb files determined by
special dependencies comments

Evan Phoenix



User-land

® All code loaded by the kernel

ON

doing Rubinius development

® No strict division from kernel code like an

® |abel used primarily to group code when

Evan Phoenix



[compiler

Evan Phoenix



VM /| Compiler
boundary

® VM provides ability to execute
CompiledMethod objects

® CompiledMethod objects are normal, first

class objects

® (Can easily be built up from scratch, one

bit at a time

Evan Phoenix



Sexp

® 2 VM primitives

® Provide ability to parse and emit code as

data

® Thanks to Parselree

® |n the future, the parser will be all in ruby

® ruby parser (Thanks Ryan Davis)

Evan Phoenix



Ruby Code:

1 1
aoeu .count

Sexp:

[:call, [:str, "aoceu"], :count]

Evan Phoenix



® Sexps are the input to the compiler
® Allows for custom Sexp composition

® Compiler transforms Sexp into internal
tree

® Compiler walks tree, using visitor pattern
to generate bytecode

Evan Phoenix



