
JRuby
Power on the JVM

Ola Bini
JRuby Core Developer

ThoughtWorks

Vanity slide
• Ola Bini

• From Stockholm, Sweden

• Programming language nerd (Lisp, Ruby, Java, Smalltalk, Io,
Erlang, ML, C/C++, etc)

• JRuby Core Developer (2 years and running)

• Author of Practical JRuby on Rails (APress)

Agenda
• What is JRuby

• How to get started

• The implementation

• Cool things

• Possibly some Rails

• Q&A

What is JRuby
• Implementation of the Ruby language

• Java 1.5+ (1.4 for JRuby 1.0)

• Retroweaver can be used for 1.4 compatibility

• Open source

• “It’s just Ruby”

• Compatible with Ruby 1.8.6

• JRuby 1.0.3 and 1.1RC3 current releases

• 1.0-branch rapidly falling behind

Community
• 8 Core developers

• 40-50 contributors

• Outstanding contributions

• Like Marcin’s Oniguruma port

• Joni is probably the fastest Regexp engine for Java right now

Ruby Issues - Threading
• Ruby 1.8: Green threading

• No scaling across processors/cores

• C libraries won’t/can’t yield

• One-size-fits-all scheduler

• Ruby 1.9: Native, non-parallel execution

• JRuby:

• Ruby threads are Java threads

• World class scheduler with tunable algorithms

Ruby Issues - Unicode
• Ruby 1.8: Partial Unicode

• Internet connection applications MUST have solid Unicode

• Ruby 1.8 provides very partial support

• App devs roll their own: Rails Multi-byte

• Ruby 1.9: Full encoding support

• Drastic changes to interface and implementation

• Performance issues

• Each string can have its own encoding

• JRuby: Java Unicode

Ruby Issues - Performance
• Ruby 1.8: Slower than most languages

• 1.8 is usually called “fast enough”

• ...but routinely finishes last

• ...and no plans to improve in 1.8

• Ruby 1.9: Improvement, but not scalable

• New engine about 1.5x for general appliciations

• Only implicit AOT compilation

• No JIT, no GC or threading changes

• JRuby: Compiler provides better performance

Ruby Issues - Memory
• Ruby 1.8: Memory management

• Simple design

• Good for many apps, but not scalable

• Stop-the-world GC

• Ruby 1.9: No change

• Improved performance => more garbage

• GC problems could multiply

• JRuby: World class Java GC’s

Ruby Issues - C
• Ruby 1.8 & 1.9: C language extensions

• C is difficult to write well

• Badly-behaved extensions can cause large problems

• Threading and GC issues relating to extensions

• Portable, but often with recompilation

• No security restrictions in the system

• JRuby

• Java extensions

• GC and threading no problem

Ruby Issues - Politics
• Politics

• “You want me to switch to what?”

• “... and it needs servers/software/training?”

• Potentially better with time (e.g. 1.9)

• Legacy

• Lots of Java apps in the world

• Extensive amount of Java frameworks

• JRuby solves both of these by running on top of Java

• “Credibility by association”

C libraries
• JRuby can’t support native extensions

• Designed around single-threaded execution

• (i.e. one app, one request per process at a time

• Stability, security problems

• Too permissive Ruby extension API

• But who cares?

• If you want to do it, there’s a Java library

• If no, we support natives access through JNA

• And even porting is not that hard

Getting started
• Java installation

• Download JRuby binary distro

• Includes JRuby, Ruby stdlib, RubyGems and rake

• Unpack

• Multiple copies on the system is fine

• Add <jruby-dir>/bin to PATH

• Install gems (gem install or jruby -S gem install)

Calling Ruby from Java
• // One-time load Ruby runtime

ScriptEngineManager factory =
 new ScriptEngineManager();

ScriptEngine engine =
 factory.getEngineByName("jruby");

// Evaluate JRuby code from string.
try {
 engine.eval("puts('Hello')");
} catch (ScriptException exception) {
 exception.printStackTrace();
}

DEMO

Java Integration

Implementation: Lexing, parsing
• Hand written lexer

• Originally ported from MRI

• Many changes since then

• LALR parser

• Port of MRI’s YACC/Bison-based parser

• Abstract Syntax Tree quite similar to MRI

• We’ve made a few changes and additions

Implementation: Core classes
• Mostly 1:1 core classes map to Java types

• String is RubyString, Array is RubyArray, etc

• Annotation based method binding
public @interface JRubyMethod {
 String[] name() default {};
 int required() default 0;
 int optional() default 0;
 boolean rest() default false;
 String[] alias() default {};
 boolean meta() default false;
 boolean module() default false;
 boolean frame() default false;
 boolean scope() default false;
 boolean rite() default false;
 Visibility visibility() default Visibility.PUBLIC;
}
...
@JRubyMethod(name = "open", required = 1, frame = true)

Implementation: Interpreter
• Simple switch based AST walker

• Recurses for nested structures

• Most code start out interpreted

• Command line scripts compiled immediately

• Precompiled script (.class) instead of .rb

• Eval’ed code is always interpreted (for now)

• Reasonably straight forward code

Implementation: Compilation
• Full Bytecode compilation

• 1.0 had partial JIT compiler (25%)

• AST walker emits code structure

• Bytecode emitter generates Java class + methods

• Real Java bytecode

• AOT mode: 1:1 mapping .rb file to .class file

• Not a “real” Java class, more a bunch of methods

• ... but has a “main” for CLI execution

• JIT mode: 1:1 mapping method to in-memory class

DEMO

Precompilation

Compiler problems
• AOT pain

• Code bodies as Java methods need method handles

• Generated as adaptor methods

• Ruby is very terse - the compiled output is much more verbose

• Mapping symbols safely (class, package, method names)

• JIT pain

• Method body must live on a class

• Class must be live in separate classloader to GC

• Class name must be unique within that classloader

Compiler optimizations
• Preallocated, cached Ruby literals

• Java opcodes for local flow-control where possible

• Explicit local “return” as cheap as implicit

• Explicit local “next”, “break”, etc simple jumps

• Java local variables when possible

• Methods and leaf closures

• leaf == no contained closures

• No eval(), binding(), etc calls present

• Monomorphic inline method cache

• Polymorphic for 1.1 (probably)

Core class implementations
• String as copy-on-write byte[] impl

• Array as copy-on-write Object[] impl

• Fast-read Hash implementation

• Java “New IO” (NIO) based IO implementation

• Example: implementing analogs for libc IO functions

• Two custom Regexp implementations

• New one works with byte[] directly

Threading
• JRuby supports only native OS threads

• Much heavier than Ruby's green threads

• But truly parallel, unlike Ruby 1.9 (GIL)

• Emulates unsafe green operations

• Thread#kill, Thread#raise inherently unsafe

• Thread#critical impossible to guarantee

• All emulated with checkpoints (pain...)

• Pooling of OS threads minimizes spinup cost

POSIX
• Normal Ruby native extensions not supported

• Maybe in future, but Ruby API exposes too much

• Native libraries accessible with JNA

• Not JNI...JNA = Java Native Access

• Programmatically load libs, call functions

• Similar to DL in Ruby

• Could easily be used for porting extensions

• JNA used for POSIX functions not in Java

• Filesystem support (symlinks, stat, chmod, chown, ...)

Java Integration
• Java types are presented as Ruby types

• Construct instances, call methods, pass objects around

• camelCase or under_score_case both work

• Most Ruby-calling-Java code looks just like Ruby

• Integration with Java type hierarchy

• Implement Java interfaces

• longhand “include SomeInterface”

• shorthand “SomeInterface.impl { ... }”

• closure conversion “add_action_listener { ... }”

• Extend Java concrete and abstract Java types

Performance
• No, it's not all that important

• Until it is!

• JRuby 1.0 was about 2x slower than Ruby 1.8.6

• JRuby 1.1 Beta 1 was about 2x faster

• JRuby trunk is 5x faster, often faster than 1.9

• As a result, we've stopped working on perf for now

• ...but targeting Java performance next

DEMO

Benchmarks

JRuby Internals
• JRuby::ast_for(“1+1”) #-> Java AST

JRuby::ast_for { 1+1 } #-> Java AST

JRuby::compile(“1+1”) #-> CompiledScript

CompiledScript.inspect_bytecode

JRuby::runtime

JRuby::reference(“str”)

... evil stuff
• a = “foobar”

a.freeze
JRuby::reference(a).setFrozen(false)

• class Foobar; end
something = Object.new
JRuby::reference(something).setMetaClass(Foobar)

• class Foobar; end
JRuby::reference(Foobar).getMethods()

JRuby on Rails - end to end
• Create application

• Package into a WAR-file, using

• Warbler

• JRubyWorks

• Goldspike

• Deploy WAR file to any Java Web Container

• Jetty, Tomcat, GlassFish

• Oracle Application Server, JBoss, WebSphere

• WebLogic

JtestR
• Test Java code with Ruby

• Glues JRuby together with state of the art Ruby libraries

• Includes RSpec, Test::Unit, dust, Mocha, etc

• Ant and Maven 2 integration

• 0.2 to be released “any time now” (tm)

Rubiq
• Lisp layer on top of JRuby

• Transforms to JRuby AST

• ... and lets JRuby execute it

• Macros

• Read macros (used to implement regexp syntax, for
example)

• Pure lexical scoping

• Lambdas transparently transforms to blocks or Proc.new

ActiveHibernate
• # define a model (or you can use existing)

class Project
 include Hibernate
 with_table_name "PROJECTS" #optional
 #column name is optional
 primary_key_accessor :id, :long, :PROJECT_ID
 hattr_accessor :name, :string
 hattr_accessor :complexity, :double
end

connect
ActiveHibernate.establish_connection(DB_CONFIG)

create
project = Project.new(:name => "JRuby", :complexity => 10)
project.save
project_id = project.id

query
all_projects = Project.find(:all)
jruby_project = Project.find(project_id)

update
jruby_project.complexity = 37
jruby_project.save

Ruvlets
• Expose Servlets as Ruby API

• Because we can!

• People keep asking for this....really!

• Expose highly tuned web-infrastructure to Ruby

• Similar in L&F to Camping

• How it works:

• Evaluates file from load path based on URL

• File returns an object with a 'service' method defined

• Object cached for all future requests

Bare bones Ruvlet
• class HelloWorld

 def service(context, request, response)
 response.content_type = "text/html"
 response.writer << <<-EOF
 <html>
 <head><title>Hello World!</title></head>
 <body>Hello World!</body>
 </html>
 EOF
 end
end

HelloWorld.new

YARV & Rubinius machine
• YARV

• 2.0 Compatibility

• Simple machine

• Simple compiler

• Might give interpreted performance improvement

• Rubinius

• Simple machine

• Quite outdated at the moment

• Why do it? Why not?

JSR292, JLR & DaVinci
• Dynamic invocation: non-java call sites

• Method handles

• Anonymous classes

• Faster reflection, escape analysis

• Interface injection

• Continuations

• Value objects (Lisp fixnums)

• Tuple types

• Tail calls

JRuby’s future
• Get 1.1 out there

• Rework the Java Integration features

• Create a stable public API for extensions

• Better performance (as always)

• Support for Ruby 1.9 features

• Light weight objects

• JSR292 support

• Rubinius?

• More primitives in Ruby?

Resources
• jruby.org

• #jruby on freenode

• glassfish.dev.java.net

• openjdk.java.net/projects/mlvm

• jtestr.codehaus.org

• code.google.com/p/activehibernate

• headius.blogspot.com

• ola-bini.blogspot.com

Q&A

