
Wednesday, September 28

Organizer of JAOO

Brian Barry Commentary

The morning began with Ivar Jacobson’s
plenary talk “Beyond Agile, Smart”. Going in
I was very curious as to exactly how this was
going to go, and where Ivar would take with the
subject matter. As it turned out, his main point
was that most software engineering methods
shared common principles, and when reduced to
essentials depend on a combination of experience
and knowledge. That knowledge can be tacit
(by which he meant implicit, non-formalized)
or explicit (formal, structured). He went on to
associate Agile methods with tacit knowledge
and the (Rational) Unified Process with explicit
knowledge. Obviously in both cases practical
experience is needed to be successful, so it is
the type of knowledge that each method draws
on which differentiates them. From this base he
launched on a more controversial point, which
was to assert that RUP is really better than Agile
(because explicit knowledge is superior to tacit
knowledge), but suffers from a delivery problem:
it requires to too much effort to manage the RUP
knowledge base (manage in this case meaning to
find , learn, apply, and control knowledge). Ivar’s
solution to reducing that cost is to use intelligent
agents to actively mitigate access to software
engineering knowledge. The presentation was
peppered with anecdotes from his career as a
developer, project manager and methodologist,
and altogether quite entertaining.

I believe there is a fundamental split in the
software engineering (SE) community between
those who believe that SE knowledge (i.e. how to
build and maintain good software systems) can
be codified, organized and transferred (Ivar’s
camp), and those who feel that it can’t (my
personal bias). The latter group is inclined to feel
that the best (only?) way to become a good SE
is by apprenticing with a master, who can guide
you but can’t provide an explicit rendering of his
personal knowledge base. In other words, SE has
more in common with medicine than with say,
accounting. It’s an interesting debate that will not
be resolved any time soon.

I spent the remainder of the day in the Sixth
Generation Language track (since I was speaking
later in that program). Dave Thomas led off with

a condensed history of programming languages,
briefly characterizing each language generation
and mentioning a number of outstanding
exemplars. He asserts that the sixth generation
languages are those that will support MDD
(Model Driven Development), which includes
DSLs (Domain Specific Languages), MDA (Model
Driven Architecture) and DOP (Domain Oriented
Programming). All of these will be needed to
build applications in the coming era of Real-
Time Business, where computing resources (CPU
cycles, memory, bandwidth) are free, there is an
overwhelming amount of data to process, and
answers must be available in (near) real-time.
This talk set the stage for the remainder of the
session.

Dave was followed by Richard Soley, the head
of OMG, who provided a general introduction to
MDA. Richard observed that 90% of software
costs derive from maintenance and integration
of existing software, not from new development.
OMG’s mission is developing standards to help
control and reduce these costs, and MDA is
a primary vehicle for pursuing this goal. He
presented MDA as a logical next step in the
progression of programming languages, an
attempt to raise the level of abstraction, using
a graphical language, UML, together with
MOF-based transformations (the analog of
compilation) between abstractions (models).

Richard was followed by Erik Meijer, who did a
great job of convincing us that there were some
really exciting things happening from a language
perspective in the next release of Visual Basic, VB
9.0. Many of these new language features show
heavy influence from work done in the functional
language community (e.g. Haskell). Perhaps
the most interesting is the effort to integrate
query operations into VB, making XML a first
class data type, which (they hope) will make
XQuery obsolete. VB 9.0 will have a full SQL-like
language. Other new features include anonymous
types, nested functions (closures), better support
for Arrays (initializers, anonymous arrays), local
type inference and dynamic interfaces (impose
structure on late bound objects).

Bronze Sponsors

Platinum Sponsor

Gold Sponsors

Silver Sponsor

Floyd Marinescu and Mike Keith gave talks
targeted more specifically towards the Java
community. Floyd covered the hot new trends
that are getting attention from Java developers,
such as AOP, dependency injection, annotations,
JVM based scripting (Groovy, JPython), AJAX
and Rich Client technology, EJB 3.0 and the
rise of Eclipse as the de facto IDE standard for
Java developers. Mike Keith (a former colleague
of mine from OTI days), spoke on techniques
for mapping Java objects to XML. Mike’s
background is on the TopLink object to relational
mapping product, so this is an area he has been
working on for some time. He explained JAXB,
and then did a “compare and contrast” between
the Object-Relational and Object-XML mapping
problems. He feels that JAXB represents a good
start but it does not solve all the problems.

The other talk in the session was my own
concerning “Trends in Open Source”. I went
through as brief history of the open source
movement, tried to characterize why open
source projects succeed or fail, and then made
a few prognostications about how open source
may shape the software landscape over the new
decade or so. In particular I think that while the
free availability of open source infrastructure
like Eclipse can reduce startup costs for new
programming language projects, it will also create
a difficult business climate that may not result
in much funding for innovation in the language
area.

Floyd Marinescu

Ted Neward
What is your background?

I’m an author, consultant and mentor,
pecializing in enterprise development for 10
years, with experience (and interest) in C++,
Java, .NET and XML
services.

You have written several books about Java and
.NET, and in general you know a lot about both
worlds. Can the Java world learn anything from
the .NET world and vice versa?

Absolutely. There’s a lot of lessons being
learned in both directions, and that’s a healthy
part of a competitive market--.NET is learning
the Zen of managed code from the 10 years of
experience that Java has, and Java is learning
a lot of innovative approaches to those same
problems from .NET. For example, .NET brought
the idea of custom metadata attributes into the
language, which Java “leveraged” as JSR 175,
whereas Java’s experiences with object/relational
mapping tools and frameworks taught Microsoft
a great deal about how they wanted to approach
this problem, culminating in the recently-
announced Project LINQ.

Java has been around for about 10 years and
in that amount of time, a strong developer
community has emerged. How strong would you
say that the .NET community is compared to the
Java community?

Throughout the JAOO conference FTU Boghandel
in corporation with Pearson Education and John
Wiley offers all particiant a special 15% discount on
all books.

This is actually a pretty difficult
question to answer, more so
than many people might think.
Obviously, if you measure the
strength of the community by the
number of open-source projects
within that community, .NET has
a ways to go to catch up to the
Java space. If you measure the
strength of the community by the
number of conferences and their
size, then it’s pretty clear that
the .NET community is actually
stronger than that of the Java
space. If, on the other hand, you
try to measure it by the number of
developers using the language(s)
on a daily basis, you then have
to wade through the (obviously
biased) numbers put forth by both
Microsoft and Sun, both about
their community as well as each
others’.

Robert C. Martin (Uncle Bob)
Why do you call yourself Uncle Bob?

It was a nickname given to me by an associate
17 years ago. I hated it at first; but once I
became a consultant I missed it. So I added it
to my signature line. Apparently it stuck.

Are agile methods best suited for small, co-
located teams or can they be used by large,
globally distributed teams?

Agile methods can be adapted to virtually any
size team. We are working with companies
of all sizes. For very large organization, some
extra practices are necessary, but the essense is
unchanged. We work in short cycles, with lots
of feedback, and communication.

What about outsourced and offshore
development teams, where organizational
boundaries, language and cultural differences,
and other communication challenges are likely
to be encountered?

Physical separation makes it more difficult to do
Agile. This does not mean it’s impossible, or

even inadvisable; it just means it’s a bit harder.
It requires more coordination, and an extra
effort to communicate well. It is essential that
the separated folks share a common mental
framework, even if they don’t share a common
physical space.

There is another factor to consider. Agile
methods reduce the cost, and increase the
efficiency of local software development. This
improvement compromises the economic
advantage of outsourcing. Indeed, we may
very well see a shift in policy towards building
software at home as Agile Methods become
more and more prevalent.

How does agile development fit into an organi-
zation having its own test/QA team?

QA and Test are the groups that experience the
most profound changes in an Agile Transition.
QA moves from a back-end verification role to a
front-end specification role. Moreover, QA and
Test are matrixed into the the teams as opposed
to operating separately. There is no “throw-it-
over-the-wall” concept in Agile Development.

Ted Neward

In 1945, Toyoda Kiichiro challenged his
struggling automobile company: “Catch up
with America in three years; otherwise the
automobile industry of Japan will not survive.”
The man who led this effort was Taiichi Ohno,
who is widely known as the Father of the Toyota
Production System. Ohno knew he had to
increase productivity by an order of magnitude,
so he adapted the assembly line concept
pioneered at Ford to the small market reality
that was post war Japan.

Ohno discovered what Michael Dell discovered
decades later as struggling college student in
Austin, Texas: for a company with limited
means and unpredictable customers, the only
option is to “make a little, sell a little.” So Ohno
figured how to eliminate the large batches of
parts that fed the typical American assembly
line, while Dell figured out how to eliminate the
middleman in the distribution chain. In both
cases, the approach was as unorthodox as it
was successful: Both Toyota and Dell have cost
structures that are 25– 50% lower than their
peers.

In the book “Toyota Production System,” Ohno
focuses on two keys to Lean success. The first
key is well known: Just-in-Time inventory
flow. The second key is not as well known:
Stop-the-Line culture. Driving down inventory
brings problems to the surface that must be
acknowledged and dealt with immediately.
Unfortunately, well-meaning people often
“work-around” these problems or patch up
their symptoms rather than eliminate the cause.
Ohno suggests that a culture which tolerates
“work-arounds” is at odds with the Lean
approach of driving down inventory to expose

Mary Poppendieck A History of Lean

problems so that they can be investigated and
solved.

You can’t have a Just-in-Time flow without a
Stop-the-Line culture. You cannot reliably and
repeatedly go fast if you encourage people to
work around ambiguities, accumulate defects
to be dealt with later, or wait until verification
to uncover problems. Establishing a Stop-the-
Line culture in a manufacturing plant was often
accompanied by the slogan “Do it Right the
First Time.” In practice, this meant having tests
in-line at every point of manufacturing so as to
discover any incipient problems the moment
they occurred, and then stopping to fix the
problem immediately, so as not to make a lot of
bad product.

Unfortunately, the “Do it Right the First
Time” slogan made its way into development,
where it was misinterpreted as a criticism of
the natural learning cycles found in a good
development process. So instead of driving
down our inventory of work-in-process in order
to uncover and attack problems, we build up
large inventories of tentative requirements,
untested code, and un-integrated modules.
Unfortunately, a slogan which was coined to
encourage people to build quality into a product
has been used to encourage us to do quite the
opposite.

Returning to Ohno’s two principles, the Lean
approach combines a Just-in-Time flow with a
Stop-the-Line culture that surfaces problems
and encourages workers to stop, investigate,
experiment, and improve their product and
their processes as a normal part of every

A Just-in-Time flow encourages us to move
from customer need to deployed software as
rapidly as possible, with work packages that
are as small as possible. But at the same time,
we must not tolerate the problems, defects,
or ambiguities, which naturally arise as we
drive down our inventory of partially done
development work. In addition to Just-in-Time
flow, we need to create a Stop-the-Line culture
in software development.

The first indicator of a Stop-the-Line culture
is a very low defect rate. If you routinely find
defects after code should be working, you are
testing too late. The second indicator of a Stop-
the-Line culture is the absence of requirements
churn. If you spend a lot of time changing
requirements after they are written, you are
writing them too soon! The ideal approach is to
write “executable tests” in place of requirements
in a Just-in-Time manner, maintain a single
code base and integrate new code several times
a day, run a test harness immediately, and stop
(or at least stop checking in new code) if the
tests don’t pass.

Everything you already know about good
planning, good architecture, good customer
understanding, and good verification remains
as valid in a Lean organization as anywhere
else. But Lean had no use for plans that are
mistaken for fact, architecture that substitutes
detail for vision, requirements that protect
from blame rather than foster collaboration,
and verification that displaces in-line testing.
Finally, Lean has no place for processes or
specifications that discourage workers from
quick experimentation and continuous change,
because in the end, Ohno tells us, Lean is all
about learning.

Jutta Eckstein
How did you get involved in the IT industry?

While completing the basic studies I had my
first encounter with IT - I had to learn Turbo
Pascal. I was so excited about programming,
that I thought this is much more creative then
industrial design could ever be. From then
on I focused on software engineering.

What does managing an agile process feel like?

In short: Physically exhausting ;-)
The reason I gave that short answer is, that
the management of an agile process is directly
related to management by walking around. It is
a lot about actively asking for feedback.
If you don’t go out and look for yourself you
will never know how the actual process is
really suiting the people on the team. And
furthermore you will have a hard time figuring
out how the process has to change in order to
fulfill the needs of the team.

How do large-scale enterprise applications fit
in with agile processes?

Very well, and moreover: Using an agile
process will be very beneficial for a large-scale
enterprise application!
Agile software development will reduce all risks
enormously, by ensuring feedback about the
real and actual system all the time (and not only
at the very end of the project).

Of course if you are wondering how you can
make the shift to agile development with
a (large?) team developing a large-scale
enterprise application, well then I have
to recommend to read my book ;-)

Christian Weyer
You are a recognized XML, Web Services and
service-orientation expert within the Microsoft
world. What is your background?

I am co-founder of thinktecture, a small company
aiding software architects and devel-
opers in realizing projects with .NET and
distributed applications technologies.
My career started on the Java platform a long
time ago and turned over to the Microsoft world
by hacking VB6, ASP and C++ COM. Over the
years I evolved to a distributed applications,
XML, Web Services and service-orientation
expert.

I have worked for many years with Microsoft
technologies like COM/DCOM, COM+, and last
but not least: .NET. Since the very first days of
.NET, when it still was called NGWS, I was
working and writing with and about .NET and its
related visions and technologies.

What’s cool and not so cool about service-
orientation?

Now we start to have the technological tools to
make the basic vision of component orientation
come true. Not so cool: The hype, the over-hype.
Ask 20 people about SOA and you get 25
opinions.

There is a lot of hype about domain specific
languages. Why are they interesting?

First, DSLs are nothing new. They have been
around for a while. Second, I think Microsoft is
creating a buzz (again). Almost everytime MS
talks about DSLs they mean something graphical
inside of Visual Studio. Obviously, this is not just
it. The really interesting part
about DSLs nowadays is that they are
accompanied by tools to build and enable them.
DSLs are not just for a technical domain.
They are also rich to provide an excellent
communication means with the end user. Using
DSLs to model the domain of the end user, his
business world.

Ralph Johnson

You are one of the leading pattern experts, and
an expert on software reuse and object-oriented
design. How did you achieve this?

When I came to the University of Illinois, my goal
was to learn how OO programming changed the
way people programmer, and especially how
it enabled reuse. I worked with anybody
who wanted to build software in and object-
oriented way. I quickly learned that using an
object-oriented programming language didn’t
necessarily result in reusable software. Early on,
I learned about frameworks, and started
working with them and designing new ones.

The way to learn about design is to design, and to
study others designs, and to get feedback on your
own designs. It is important to think about
what went right and what went wrong. People in
industry often have too many deadlines to take
time to think. People in universities often don’t
get enough practice to have something to think
about. I was in the good position of both being

The way to learn about design is to design, and to
study others designs, and to get feedback on your
own designs. It is important to think about
what went right and what went wrong. People in
industry often have too many deadlines to take
time to think. People in universities often don’t
get enough practice to have something to think
about. I was in the good position of both being
able to practice and being able to think about it.

Which books about patterns are your favorites?

Eric Evans book on “Domain Driven Design” and
“Patterns for Time-Triggered Embedded Systems”
by Michael Pont.

The Windows Workflow Foundation

What is Windows Workflow Foundation?
Microsoft Windows Workflow Foundation
(WWF), which we announced at PDC 2005
two weeks ago, adds workflow to the Windows
platform. It will ship in WinFX, which is free
by the way. WinFX also includes Windows
Presentation Foundation, formerly Avalon, and
Windows Communication Foundation, formerly
Indigo.

WWF has the potential to enable every single
application that you have ever written on
Windows to have workflow capabilities - a bold
statement indeed, but by adding this capability
to the Windows platform we enable all the
developers out there to add workflow directly
into their applications whether those applications
are console applications or web services
applications or Windows form applications or
future generation applications. In fact thinking
about it another way, WWF adds a new pattern to
mainstream application development - I call this
the “externalized workflow-first” design pattern.

Think about it, when you build UI you just reach
for WinForms and/or the Windows Presentation
Foundation; for data management you grab
ADO.NET; and for distributed connectivity and
messaging you use Enterprise Services, WSE,
and/or Windows Communication Foundation.
But for business services and business objects
what do you do? We’re starting to see the
emergence of light, flexible modelling approaches
based on DSLs to address this problem. They
can give you a great start especially when used
in conjunction with frameworks. But we still
also see a huge amount of code that is simply
branching logic - “if”, “else,” “while loops” and
so on, this is opaque and is effectively workflow
hard-coded directly into applications. Now
imagine we are able to externalize the “workflow”
aspects of applications and make them explicit
through models. Suddenly an essential part of
applications will be freed of their shackles - they
will become more transparent. Furthermore, by
providing graphical construction tools, we can
make the workflow modelling experience even
better. Try to imagine how powerful it would be
to tie workflow models together with domain
specific models in a DSL. I find that thought
really exciting!

providing graphical construction tools, we can
make the workflow modelling experience even
better. Try to imagine how powerful it would be
to tie workflow models together with domain
specific models in a DSL. I find that thought
really exciting!

What is the development experience of
using Windows Workflow Foundation?
Workflow is going to be new to a lot of developers
so we’ve tried to make everything about building
workflows as seamless as possible and easy to
understand for .NET developers. We have an
API set in System.Workflow to directly program
workflows. But we also have a designer for
developing workflow models integrated into
Visual Studio 2005. This means you can build
workflow models in Visual Studio and create
workflow artifacts that become a regular part
of your solution projects. You compile these as
usual because they actually end up becoming
VB.NET or C# code through model-based code
generation.

The designer allows you to create the
fundamental workflow component called
activities. From these you can compose
sequential workflows and event-driven or state
transition based workflows. Behind the scenes,
but not hidden from view, the designer is actually
modifying the source code for the workflow which
is comprised of statements which create the
workflow as a model. The workflow ends up as a
collection of activities with properties set via the
designer. When run the generated source code
creates your custom workflow type in memory
and executes it on the workflow runtime. Since
the workflow runtime has control of that type, it
can manage both the lifetime of that workflow
and the state that’s associated with it. The
lifetime of the workflow need not be short like a
procedural piece of logic, it can be long-running
since it may be waiting for events from other
parts of your application.

You can actually use an XML representation,
XAML in fact, to create a workflow. So, it’s very
consistent with other technologies we have on the
.NET Framework or in WinFX. Our customers
demand transparency so you can literally write
code and then load it into the designer that will

...by Arvindra Sehmi

consistent with other technologies we have on the
.NET Framework or in WinFX. Our customers
demand transparency so you can literally write
code and then load it into the designer that will
reverse engineer the code into the graphical
representation of the workflow. This is good for
hardcore developers who prefer code to graphical
diagrams, but it also makes it a lot easier to
learn this technology. Having this graphical-
textual duality is also a boon for the modelling
experience in general.

You said activities are fundamental. What
are they?
Activities are the building blocks for workflows.
You create activities much like you may create
controls for Forms when you’re building a
Windows Forms application. There are built-in
controls and custom controls and you simply
drag them on to your Forms. You can do the same
with activities. We have a bunch of activities
that come out of the box and they appear on
the toolbox when you create a workflow, be it a
sequential workflow or a state-based workflow or
another type of workflow - you just drag those on
to the design surface and compose your workflow.
Of course you can also create custom activities
and we expect ISVs and other companies to
build activities in different application domains.
Within Microsoft, the Office group is building a
set of activities to support new collaboration and
ad-hoc workflow features in the upcoming Office
12. Say an ISV in insurance, where there’s a lot
of workflow involved, wants to build a claims
processing system? Well this process is very
unique to each company, so you could imagine
the ISV providing a set of customizable domain
specific activities for many of the processes. Their
insurance company customer would then use
these to construct a specific instance of its own
claims process.

How would you see this technology
affecting human workflows?
We think about “workflow” as including both
humans and software systems. Sequential
workflow is ideally suited for system based
workflows, they’re very structured, they have
a start and they have an end, they look like a
flow chart and effectively you walk down a well
trodden path.

workflows, they’re very structured, they have
a start and they have an end, they look like a
flow chart and effectively you walk down a well
trodden path.

On the other hand a state-based workflow is well
suited for human interactions, where latency and
exception conditions are the norm. Making a
state machine available at the platform level for
every developer to use is a really crucial thing we
believe.

What we’re doing here is consistent with
ASP.NET or WinForms, it’s just infrastructure
belonging where it should - in the platform. There
are many scenarios that you can build on top of
this infrastructure and that’s the value that you
guys add and it’ll run just fine on Windows XP,
2003 Server and Vista on the client. One thing
to note is that this technology doesn’t have its
own standalone process nor its own executable;
it actually runs in your process so the cost of
execution is really low, and it can scale from a
Windows console application all the way out to a
line of business application or BizTalk Server or
SharePoint and those kinds of things by allowing
the workflow engine to be hosted as you see fit.

Are any standards being applied that you
are aware of for workflow management?
Well, that’s always a good question because many
companies need to adhere to different standards
when building workflow type applications. We’ve
tried to build Windows Workflow Foundation so
it can be made to work with different standards
without restriction. For example, we’ve built a
set of activities, which you can swap-out from
the default activities, which allow our workflow
engine to persist to BPEL format and read it
back in. The BPEL pack will be available on the
Windows Workflow Community website. By
making workflow generally and freely available
in Windows, we had to avoid a fixed language
grammar. I am sure things will be built using
WWF that will completely surprise us. Therefore
the engine itself literally must not know what
each of the grammar steps are in the language
sentences made up of activities. When the engine
executes an activity that does an “if”, a “while”,
or a “loop”, it’s the activity’s own decision to
do whatever it needs to not the engine’s. The
engine just chains together the set of activities.

the language sentences made up of activities.
When the engine executes an activity that does
an “if”, a “while”, or a “loop”, it’s the activity’s
own decision to do whatever it needs to not
the engine’s. The engine just chains together
the set of activities. Out of the box we have the
activities that you would expect, “if”, “while”,
“else”, “compensation transactions” and so on.
But you can throw out our activities and still use
our engine. You can implement a new standard,
or invent your own via custom activities and you
can still use the designer to support that. You
can host the designer in your own application.
And your custom activities would serialize out to
XML in a manner that was appropriate with your
standard.

If we have the ability to enable Workflow
in any application, how does that affect
BizTalk Server?
BizTalk Server is an excellent example of a
Business Process Management application, and I
think this really calls out the difference between
infrastructure and product. BizTalk server is
an excellent product for creating workflow -
effectively “orchestration” - between applications.
For example, say I have my Siebel application,
my SAP application, and they might be Workflow
enabled in themselves but what I want to do
is integrate information in those applications
together with my trading partners’ information
stores. So I have to create a Workflow that sits
outside applications and BizTalk Server will
absolutely continue to be vital to Microsoft’s
strategy in that role. In such scenarios you
need to think about messaging, management,
adapters, business activity monitoring and
all of those standard capabilities of Business
Process Management (BPM), all of which BizTalk
provides you.

WWF doesn’t provide you with those features - it
is a pure form of workflow technology and can be
thought of as just the orchestration engine part
of BizTalk Server, or BizTalk minus all the BPM
stuff.
ctivities, so that future innovations can be
enabled to support standards whilst maintaining
consistency with the engine itself.

How committed is Microsoft to this stuff?
The key thing is that this technology is going
into Windows which means it is going to last
for a very, very long time, and we absolutely
expect there will be future standards in this space
and future standards in each one of the many
different scenarios this technology supports.
We’ve created an engine that doesn’t run on a
fixed language but runs with general activities, so
that future innovations can be enabled to support
standards whilst maintaining consistency with
the engine itself.

This all sounds great! Where can I find out
more?
Sure, just point your browser to the Windows
Workflow Community website here:
www.WindowsWorkflow.net. You can also pick
up a great whitepaper on WWF at the Microsoft
stand in the exhibition area of JAOO. I am also
not surprised that there has been a fair amount of
content in the JAOO agenda discussing workflow
and orchestration. This area is hot and now WWF
has definitely broken the barrier to entry and
adoption for application developers.

Have fun with WWF - Thanks!

[Acknowledgements to Scott Woodgate and Paul
Andrew, Microsoft Corporation, for the core
discussion presented in this interview.]

JAOO IT Run

Despite the weather 1069 runners joined the run on Tuesday night.

Aarhus United IT Sprinters
A. Keidser
M. Skovby Andersen
C. Jahn Svinding

ACURE
H. Roulund Andersen
T. R. Møller
J. Jul Jørgensen

IT-Byen Katrinebjerg 4
H. Gregers Jensen
P. Mechlenborg
K. Ligaard Nielsen

JAOO IT-Run Team Winners

New presentation

Jan Schoubo , BEA
Business track: 14:00 - 14:30

