
Tuesday, September 27

All photos from the first conference day...

Interview Raghu Kodali
4) Do you think Web Services is the right
technology to implement a service-oriented
architecture? Why or why not?

SOA is an architectural pattern while Web
Services are Services that are implemented
using a set of standards, and Web Services
are one of the ways you can implement SOA.
You can implement SOA on any number of
technologies like messaging, passing around
EDI docs, CORBA, etc., but lack of additional
standards that go hand-in-hand with these
technologies, and bolted on proprietary baggage
that comes along with them (sometimes), more
expensive infrastructure required (sometimes)
to run these systems/services instead of
running them on a bunch of commodity servers
makes it difficult to harness the benefits of the
architecture.

What Web Services brings onto the table is a
set a standards that will provide a standard
way to create a service contract that provides
loose coupling between the definition and
implementation, and several other standards
such as WS-BPEL for service orchestration,
UDDI for registry and SOAP for transportation
to name a few.
General advantage of implementing SOA on
Web Services is that you get platform neutral
way of accessing the services and better
interoperability as more and more Web Services
specifications are supported by larger group of
vendors.

1) What is your background?

I am product manager and SOA evangelist in
the Oracle Application Server group. Apart from
driving the requirements and feedback into
the development plans, my job is to share the
knowledge on new and emerging technologies
with the developer community.

2) What is the nature of the problem that SOA
is a solution to?

SOA is an architectural pattern that can be
used and adopted to solve different types or
problems or situations in IT organisations
and enterprises. Interoperability, reusing or
leveraging existing IT infrastructure, agility for
changing business requirements are some of the
typical problems seen in enterprises that SOA
can offer a solution to.

3) It is often said that SOA principles can be
applied inside and across organizations. Inside
an organization, the IT infrastructure often
consists of many heterogeneous legacy systems
that are not service oriented. How can SOA
principles be helpful in this context?

It’s a very good question. A classic problem
seen in the typical enterprise and reality out
there in enterprises is that infrastructure
is very hetrogeneous. Organizations have
a wide variety of applications, middleware
solutions, software packages, development
and deployment platforms etc. This is where
SOA would very nicely fit in. The basic idea of
SOA is being “loosely coupled”, and we need to
have loosely coupled model in a hetrogeneous
enviroment to cut down tremondous costs
of developing and maintaining properitary
integration between hetrogeneous components.
By exposing business processes as services in
a hetrogenous environment, we will be able to
achieve the goal of connecting the hetrogeneous
systems, without rewriting and reusing the
exisiting infrastructure, which will also help
us build and innovate newer systems that
leverage existing infrastructure and adapt to
ever changing business requirements in the
enterprises.

Bronze Sponsors

Platinum Sponsor

Gold Sponsors

Silver Sponsor

5) Which top 3 sessions are you going to attend
and why?

I definitely want to attend the following
sessions:
(1) SOA - From Hype to Reality/ Nicolai
Josuttis
(2) /Trends and the Future of Enterprise Java/
Floyd Marinescu
(3) /The Next Impedance Mismatch - Mapping
Java Objects and Components to XML/ Dennis
Leung

I definitely think that SOA is something that
will help IT organisations and it is good to listen
and learn from talks on how enterprises are
deploying SOA. Floyd has done some excellent
work on getting the news about the latest trends
and happenings to the developer community.
It will be great to hear his opinions on what
he sees as the upcoming trends. EJB 3.0 is
finally going to solve the impedance mismatch
between database and java objects using POJO
persistence in a standards fashion, but the
mapping between Java objects and XML isn’t
being cleary defined yet, so this talk will be a
good one to catch up on the issue and see the
potential solutions out there.

Please see the interesting articel on Enterprise
JavaBeans by Raghu Kodali on jaoo.dk

Interview Mike Keith
The annotation support included in Java SE
5 is being touted as something between a new
and better way to develop applications and a
full-scale programming revolution. With Java
Standard Edition (Java SE) 5 now beginning
to get a foothold amongst the conservative IT
crowds, and the Java EE 5 platform planned
for release soon it is worth taking a look at one
factor that affects how we view annotations and
XML.

I assume that the reader is familiar with
annotations and program metadata, and how
they are defined and declared. If not, I would
recommend reading an introductory paper first,
since this article will not introduce them or
explain what they are.

It may or may not be obvious, but the primary
difference between annotations and XML is
where the metadata is located. The majority
of their benefits and drawbacks result from
metadata placement, and the consequences
reach farther than one might initially suppose.

XML metadata is traditionally stored in flat
files. Although it is possible to exploit file
structure, such as using directory hierarchies,
to offer more context this is seldom done. More
often the XML is randomly lumped together
as a wad of metadata with the subject of the
metadata being explicitly provided in each case.

Consider a middleware layer that allows objects
to be remoted (without implementation of any
special “Remote” interface) and also allows
certain methods to be selectively marked as
remote. Furthermore, it allows specification
of method parameters as being passed by
reference when a call is local. To create XML
metadata to uniquely identify such a method
would require that it be fully specified. This
would necessarily include the fully qualified
class name, the method name and the set of
ordered method parameter types. The extra
contextual information is needed solely because
the metadata and the artifact it is describing
are spatially separate and must be associated.
When attempting to read and interpret the
metadata in its raw XML form the challenge is
to differentiate the XML elements that have

semantic meaning from those which are purely
contextual.

Annotations are attached to the program
artifacts they describe. This both gives relevance
to the metadata when viewed and provides the
multiple layers of context that must be explicitly
conveyed in XML. The first and most apparent
benefits of using annotations are therefore
brevity and clarity. It is simpler to specify, and
far less painful to understand.

Another advantage of coupling the metadata
with the source code is practicality of the
process. For example, if the application wants
to change the name of its remote method, or
change a parameter that is passed in then the
developer must remember to keep the XML file
(which may be stored in an entirely different
location from the class) current. The XML file
has a dependency on the code in that it refers to
a method. This means that if the code changes
there is a possibility that the XML may have to
as well. The maintenance incentive for using
annotations, then, is quite legitimate.

Similarly, XML that is not connected to the code
is not an integrated part of the same version-
controlled element as the code is. Changing
one element and creating a new version of it
does not intrinsically imply creating a new
version of the other, although it is possible
to configure some version control systems to
do such a thing. Although there are cases in
which changing one does not require changing
the other, even a dependency in one direction
(the metadata on the code) points to the more
appropriate coupling of the two.

Annotations are built into the Java compiler
and VM, so type checking at the Java class
level comes for free. While it is true that XML
schemas provide some degrees of validation and
constraint checking they have a more manual
flavor and are not nearly as sophisticated as
the Java compiler. Being integrated with the
language permits the pre-existing language
infrastructure, such as classloaders and the
reflection API, to be used to load and access the
metadata.

Although annotations, like an XML file, are
quite happy to exist in runtime environments in
which they get completely ignored, and the VM
is more forgiving at class load time of elements
that have annotations for which the definitions
are not on the class path, this is currently
problematic in current versions of the JVM.

The very notion of what an annotation is,
additional information attached to an object,
means there must be an object to which the
information must be attached. One of the
difficulties is that some metadata is more global
in scope than any particular program element,
meaning that there is not really a suitable object
for annotating or situating the metadata. The
only solution so far in this area is the package-
info.java file, which allows annotations on
a given Java package, but not globally. The
deficiency lies within the Java language itself
since it lacks an application or module artifact
that could be annotated. This is being addressed
in JSR 277 but won’t be ready until Java SE 7
(Dolphin).

Annotations are here to stay. They have made
their debut on the Java stage and are now being
integrated into the various Java specifications
and standards. They are being heavily adopted
and relied on for standardized metadata within
the Java EE standards, such as EJB 3.0. Being
able to use either annotations or XML, or even
combining the two provides the best of both
worlds and lets everybody do what works for
them and for their application.

So why aren’t annotations used for all metadata
if they are so wonderful? Well, they are clearly
not the silver metadata bullet and do have their
own share of problems that renders them less
suitable for some applications or uses.

Take the example of a tool for adding metadata
to existing classes. At the first step of the
process, we immediately hit the first and
most obvious problem. What if only the class
files are present but the source code is not?
Annotations may only be read at runtime, not
added. Annotating the classes is not an option,
and the tool is forced to use XML or some other
mechanism that is external to the class.

The next step is to actually add the annotations.
This becomes a fairly intensive process for the
tool, because the source needs to be parsed
and the new annotations added at the correct
position. Whereas using XML was a simple
matter of having to specify the context and
then write out the XML we now have to find the
source code for the element, parse it, add the
correct syntactical annotation pieces, and then
rewrite it all back out. Interestingly, we end up
with the inverse of the version control problem
that XML had. Now we are forced to re-version
the source element whenever we change the
metadata instead of having the option not to.

Once the annotations have been added, the
classes need to be recompiled. To achieve this
the definitions for the annotations inserted into
the source code need to be on the class path.

Metadata – It’s All About Location

Interview Gil Tene
5) Which top 3 sessions are you going to attend
and why?

This is my first year at JAOO. I plan to sample
the different tracks, and get people’s advice
on interesting talks to attend. On Wednesday
I expect to be a bit busy, as my colleague Ivan
Posva and I are presenting in three different
sessions.

See article by Gil Tene on jaoo.dk about scalable
computing and join Gil Tene and Ivan Posva for
talks in the Java 5.0 and Scalable Computing
tracks Wednesday.

utilize additional resources even when they
are available. In transactional and interactive
applications, the most revealing external
measurement is that of response time under
varying rates of completed transactions.
Another useful measurement of scalability is the
efficiency with which an application consumes
available resources. Tracking achieved
throughout against available resources for an
unbound workload will often demonstrate an
application’s inherent scalability limitations.

3) In which ways can virtual machines affect
scalability?

Virtual machines can optimize for scalability
and match the application to the underlying
execution platform’s capabilities. These
optimizations can offer enhanced scalability
to existing programs, often with little or
no modification to code or configuration.
Concurrent execution of synchronized blocks
is only one example of how a virtual machine
can significantly enhance scalability. Advances
in garbage collection techniques in modern
virtual machines allow applications to scale
their memory footprint and throughput without
compromising response times.

Enhancements in virtual machines and their
use of 64-bit, SMP hardware are allowing us to
move from the historic sweet spot of about 2
CPUs and 1 GB of memory per virtual machine
instance, to tens and hundreds of CPUs, and
tens of gigabytes of heap memory. It is now
practical to deploy a 50-cpu, 20GB application
instance that consistently responds to all
requests in tens or hundreds of milliseconds.
What we did at Azul is leverage a virtual
machine as a way to ubiquitously provide
such capacity to virtually any server in the
datacenter, and to existing and future Java
powered application or application servers.
This capacity can be deployed as a shared asset,
much like storage and network resources are. It
can be accessed by applications and developers
that would previously have been limited to

1) What is your background?

I’ve been working with various forms of virtual
machines since the late 80’s, and tackling
scalability challenges for about the same
amount of time. I built and shipped a number
of products with several different companies
over that period of time, spanning enterprise
software, networking, security, and command
and control systems.

I co-founded Azul Systems in 2001 with the
intent of bringing dramatic new scale and
predictability to datacenter applications. We set
off to build an infrastructure class platform for
delivering virtual machine compute capacity. I
like to think of our systems as compute power
stations, powering the grid of existing server
running operating systems such as Solaris,
Linux, HP-UX and AIX. In architecting and
building these systems, we’ve tackled and
solved some very fundamental problems around
scaling Virtual Machine execution to 100’s
of CPUs and 100’s of GB of memory, while
delivering this capacity in a way that can be
practically deployed. It is definitely the most
creative and most fun period I can remember.

In the last four years, my team and I have
created brand new garbage collection
techniques, new multithreaded synchronization
and execution techniques, a means of
transparently delivering virtual machine
compute capacity into existing servers and
programs, and an amazing hardware platform
that supports all these new features.

2) How would you define scalability, and in
which ways can it be measured?

To me, scalability measures the ability of an
application to deal with increasing workload
while maintaining response or completion
times at acceptable levels. Clearly, as more
work is required, more resources are required.
However, many applications reach a scalability
limit where they are unable to effectively

the compute capacity they could afford in the
form dedicated assets. I believe that ubiquitous
access to well behaving, massively scalable
compute capacity is going to open new doors
to application developers, much like similar
access to scalable storage and networking
infrastructures did in the past.

4) Building scalable applications can be hard.
What are your favorite books on the subject?

Scalability is a very wide topic and spans many
disciplines. For Java developers, I highly
recommend a book I’ve been reviewing, titled
“Java Concurrency in Practice” by Brian Goetz
and Tim Peierls (with David Holmes, Josh
Bloch, Joe Bowbeer, and Doug Lea). It will be
available January 2006 from Addison Wesley,
and I believe you can even preorder it now on
Amazon.

0) What is your background?

I’ve been writing software since the 1970’s
when I was a kid. I am one of Atari’s first game
developers, brought the Norton Utilities for
Macintosh to market (along with Stacker and
SoftWindows.) I was principal architect of the
Sun Community Server and founded 3 start-
up companies. Today I’m the “go to” guy for
enterprises needing to understand and solve
scalability and performance problems in their
information systems.

1) Where do you see SOA being adopted in the
real world today?

Recent mandates in the supply chain space in
the US by Wal-Mart - the giant retailer - and
in the defense industries by the US Department
of Defense requiring information systems to
use, store, and exchange data in XML format
have software architects and developers asking
the question: What is the role of data in an
information system?

The resulting efforts deliver real world
services using XML as the messaging medium
and XML Schema as means to agree on the
semantic knowledge of the message. I tested
SOA implementations for General Motors
where auto dealers order parts from the
manufacturing plants using ebXML and
UBL messaging, I see SOAP being used by an
insurance underwriter as a general API to its
insurance selling customers. I see RSS used in
news feeds and podcasts.

In my mind, Web Services are all about XML
messaging in a SOAP, REST, AJAX, or RSS
environment. SOA is Web Services with a
governance model. SOA answers the question:
“Who will answer the phone call when the
service breaks?”

2) What kinds of scalability and performance
problems are enterprises encountering today
in their Web Service deployments?

Many enterprises are failing to transition their
SOA services from pilot to production.

Interview Frank Cohen
Enterprises are looking for rapid integration,
flexible data management, interoperability
and lower cost of ownership. Unfortunately,
existing commercial and open source Java
solutions do not perform well enough to
become viable platforms for SOA development.
Over the past three years I have measured
scalability and performance of most of the Java
application servers and found results in the
1.5 to 2 transactions-per-second performance
level. That’s just not good enough to get into
production.

3) What do you recommend to solve scalability
and performance problems and why?

I’m here at JAOO to introduce a new articture:
FastSOA. The FastSOA architecture runs beside
or in front of existing Web-base infrastructures.
A service consumer (the client) makes a SOAP
over HTTP request to a SOAP binding, which
passes the XML data of the SOAP call to the
XQuery engine. An XQuery processes the native
XML request and may make queries to other
services and data sources via JDBC, SOAP, and
JMS protocols. The XML response document is
passed to the SOAP binding and passed to the
consumer.

Additionally, if the same document is requested
multiple times, then the XQuery stores the
response in a native XML in the mid-tier
with time-to-live parameters. This delivers
SOA acceleration through caching for even
faster SOA performance. The goal of FastSOA
is to deliver an order of magnitude faster
performance and scalability.

4) How does XQuery and native XML database
technology help a Java developer deliver well
performing and scalable SOA?

Java tools normally build a proxy as a
binding between a bean and the HTTP-
based service interface. The problem is that
the binding is normally very inefficient. I’ve
seen some bindings create 15,000 or more
objects to handle a SOAP request of less than

seen some bindings create 15,000 or more
objects to handle a SOAP request of less than
25,000 bytes of message payload. These
transformations kill performance!
It seems natural to me to expose a SOAP service
that when called executes an XQuery to handle
the SOAP request. In an XQuery environment
there is no transformation into objects. Plus,
I’ve seen XQuery implementations that deliver
extensions to the specification that enable
the XQuery to make a call to a Java method.
(Raining Data TigerLogic does this.) So you’ve
got the best of both worlds: the XQuery handles
the SOAP request and if needed the XQuery
calls a Java object for additional processing.

Native XML database technology helps a Java
developer to achieve faster performance and
better scalability in persisting XML data.
Using a relational database requires the XML
to be transformed into relational tables. That
transformation kills performance too.
Adding XQuery to a native XML database
enables mid-tier caching and service
accelleration and data mitigation and
aggregation services.

5) Which SOA related books can you
recommend?

I really like David Chappell’s book The
Enterprise Service Bus. It is well written and
covers most of the basics.

Of course I am shameless at plugging my new
book FastSOA (aka Real World XQuery) that
Morgan Kaufmann will publish next year.
Chapters are available for free download at
http://www.xquerynow.com/thebook

6) Which top 3 sessions are you going to attend
and why?

I plan to attend...

Ivan Posva’s presentation on Presentation:
“Java Technology Performance Myths
Exposed”, Track: Java 5.0, because I want to
learn what hundreds of Java CPUs can do for
performance of an application and service.

Jim Hugunin’s presentation on “IronPython:
Python on the .NET Framework”, Track:
Scripting And Dynamics, because Jim created
Jython - the scripting language I embed in my
TestMaker open-source test tool.

Tim Bayen’s presentation on “Presentation:
“Workflow, BPM, orchestration and Java”,
Track: J2EE, because this is the year of BPEL.
Well, isn’t it?!

7) What surprises would you like to find at
JAOO?

I would love to see Azul Systems announce a
200 CPU laptop. (And I’d also like to know
where the Jet Pack that Boeing promised me at
the 1965 World’s Fair is!)

Today everyone wants to be agile. It is pathetic to see how basically every speaker has added the
word agile to the title of their talks. I haven’t done it. I haven’t done it, for two fundamental reasons.
1. All my work over the years has, as I soon will explain, strived to make software development more
agile.
2. Agile is not enough, we need more . I want agile+++, the meaning of the pluses I will explain in a
minute.

Thus we all agree that we need agile software processes. We all agree on many agile principles such
as iterative development, continuous integration & testing, use only what you need, etc. We agree
with the four statements in the agile manifesto adopted by the Agile Alliance.

· Individuals and interactions over process. Of course, people are more important than the steps laid
out and described in a book about process, since books don’t produce software. However, people
need to take advantage of explicitly expressed knowledge in order for a software project to succeed
consistently.
· Working software over comprehensive documentation. Of course, working code is the only
thing that’s guaranteed to make your customer happy, no matter how rigorously your design and
architecture might be expressed (for instance in UML). However, the code needs to be understood
and maintained after your initial development team has moved on. This is hard with code-centric
models; proper use of the UML makes a big difference in this context.
· Customer collaboration over contract negotiation. Of course, software requirements are very
difficult to specify at the beginning of a project; they evolve as the software goes through iterations.
However, the requirements need to be there for the customer’s future reference (the customer speaks
English, not Java code).
· Responding to change over following a plan. Of course, detailed planning at the outset of a project
is likely to cheat the customer down the line. However, a rough overall plan and small plans for the
next small steps help keep the project at its target area.

However, we have different ways to get there. The so called “agile methods” primarily rely on tacit
knowledge. Tacit means implicit knowledge (achieved ad hoc and undocumented). The Unified
Process relies primarily on explicit, structured knowledge. This is a big difference that has not come
through in the debate.

A process or a method being agile to many means that its definition (description, book, web site,
etc.) is light, i.e., it is sketchy. Thus when working according to it in a project, you have to use
tacit knowledge and therefore the project is agile. This may be true in many cases, but in larger
organizations you usually have a lot of people with different tacit knowledge. This creates a lot of
difficulties working together. People need guidelines in the form of explicit knowledge to work
consistently and create good software. Thus, a very important insight is that:
A light process may make a project heavy.

 We also know that too much explicit knowledge such as in the Unified Process (UP), can make
projects heavy, if they have to select what to learn, learn it, apply it and update it with new explicit
knowledge as they learn more.

Thus, on the one hand it is hard to see how methods based on tacit knowledge (read agile methods)
can scale into the future.
· We can’t teach people much, since we have little common knowledge to teach.
· We can’t grow our knowledge base, since there is no base to grow.
· We can’t build tools based on our knowledge, since we don’t know what knowledge to support.
· Etc.

On the other hand methods based on explicit knowledge (read Unified Process based methods) and
delivered in some form of book (configurable and extendable or not) are overwhelming and can’t
scale either but for a different reason. Here the heaviness and the cost are delimiting factors. Only a
small part of the software community will adopt them.

However, if we in some “magical” or say smart way dramatically can reduce the work to select,
learn, apply and update the knowledge in UP, the situation will be different. If we can deliver the
knowledge you need, and only that knowledge, and exactly when you need it and not before, then the
size of the process doesn’t matter. Whether the process “book” is 100 pages, 1,000 pages or for that
matter 100,000 pages will be irrelevant for ease of use. Thus, the more the better! You will only get
just what you need and when you need it. And the bigger book, the more real on-line mentoring you
will get.

To make a process smart we need to codify the explicitly captured knowledge in the form of
intelligent agents. Every developer has an online agent, or as we say, a virtual mentor. The virtual
mentor is able to select what you need know, teach you exactly that, help you apply what you learnt
and learn itself from your experience. We have proven that this technology really works (see for
example Jaczone’s WayPointer). Much more will happen in the years to come, but already today, as
experienced by Tata Consultancy Services, substantial increases in productivity (more than 20%),
quality, user experience, etc. can be made.

XP talks about pair programming. With these virtual mentors we talk about:
– Virtual Pair Programmers
– Virtual Pair Analysts
– Virtual Pair Designer
– Virtual Pair Tester
– Virtual Pair Project Managers
– Etc.

A smart process is agile (as defined by the agile manifesto) but it is also more. I have formulated
four manifesto-principles to define a smart process and I call them Manifesto for Smart Software
Development:
· Explicit knowledge over tacit knowledge. We should not need to spend time getting people to
reinvent well-known stuff, nor should we waste time explaining it. Knowledge should be made
explicit, as well as easily accessible and learned.
· Active process over passive process. Development teams no longer need to see process as something
static that needs to be learned. Instead, the process works together with the practitioner actively as
peers.
· Team capability over dependency on individuals. Instead of letting knowledge reside only in the
heads of some key individuals, knowledge should be shared by the team. The team should share the
work load as equally as possible.
· Self-organizing teams over extreme (rigid or lax) organization structure. Today, teams tend to
err on two extremes - being too rigid in the way they work, or being too lax to the point of loosing
control. The process should be flexible without loosing control.

I can’t see that methods or processes that primarily rely on tacit knowledge ever can compete with
smart processes. Together I hope we can make the software world smarter and not just agile.

Interview Ivar Jacobson Beyond Agile: Smart

Also at

Book Signing
Tuesday 12:30
Ivar Jacobson, Ted Neward, Gilad Bracha, Frank
Cohen and more from Pearson Education.

javaPuzzlers = new Book (“Joshua Bloch & Neal Gafter”);
if (you.buy(javaPuzzlers) && javaPuzzlers.copiesSold () <=35)

you.getFree(“A cool Java Puzzlers tee shirt!”);

Wellness
How can boost more energy into your
body?

 Drink water with energy.
 Breathe air without acid.

Programme your brain for better sleep.
Use the latest technology to reduce your
sleep.
Try bioaxial rotation to recharge your
batteries and you generate better code.

How can you improve your balance?

Come and see us and get a free energy
boost and Pi-water - we are right next to
the information booth.

Organizer of JAOO

Tuesday 15:30
Come and have a glass of wine and get some
books signed by authors from John Wiley.

