
1

Exploiting

go
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a Multiprocessors

in Java

Doug Lea

State University of New York at Oswe

dl@cs.oswego.edu

http://gee.cs.oswego.edu

2

Outline

C

o
n

c
u

r
r

e
n

t

P
r

o
g

r
a

m
m

i
n

g

i
n

J

a
v

a

Improving service performance

• Architectures, forces, options

Delegation

• Worker Threads

Decomposition

• Fork/Join designs

3

Improving Service Performance

C

o
n

c
u

r
r

e
n

t

P
r

o
g

r
a

m
m

i
n

g

i
n

J

a
v

a

Performance Goals

Availability

Maximize message acceptance rate

Throughput

Minimize service times

Basic Approach

Offload tasks to objects running in other threads

state, acquaintances

serve(...) {

 perform service

}

trigger
request

Host

Client

 . . .

 . . .

4

Asynchronously Delegated Services

handler

handler

handler

handler
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Hosts are reactive

Of form: for(;;) { accept and dispatch a request; }

Handlers are task-based

Of form: processOneRequest(...)

Can improve latency and availability

Host object can quickly respond to next message

Can improve throughput

Multiple handlers exploit parallelism

state, acquaintances

serve(...) {
 delegate

}

trigger

Host

5

Major Design Forces

C

o
n

c
u

r
r

e
n

t

P
r

o
g

r
a

m
m

i
n

g

i
n

J

a
v

a

Problem decomposition

• Maximizing parallelism

• Exploiting multiple CPUs, overlapping IO

Resource management

• Minimizing overhead

• Avoiding resource exhaustion

Concurrency control

• Obeying message semantics; scheduling

• Maintaining safety, liveness

Lead to two sets of patterns, surrounding:

• Dispatching to handlers in other threads

• Breaking up and managing Tasks

6

Delegation using Open Calls

C

o
n

c
u

r
r

e
n

t

P
r

o
g

r
a

m
m

i
n

g

i
n

J

a
v

a

Event-based programming style:

• Safely update local state (holding locks)

• Issue call to delegate (without holding locks)

class Host { //...
 final Handler handler;

 public void serve(...) {
 updateState(...);
 handler.process(...);
 }

synchronized void updateState(...) {
 // ...
 }
}

Reduces Host as bottleneck, but does not introduce any
concurrency

7

Thread-per-Request Delegation

ap
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a class Host { //...

 final Handler handler;

 public void serve(...) {

 updateState(...);

 Runnable task = new Runnable() { // wr

 public void run() {

 handler.process(...);

 }

 };

 new Thread(task).start(); // run

 }

 synchronized void updateState(...) {

 // ...

 }

}

8

Messages and Tasks in Java

thod

P

RBA
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Direct method invocations

• Rely on standard call/return mechanics

Command strings

• Recipient parses then dispatches to underlying me

• Widely used in client/server systems including HTT

EventObjects and service codes

• Recipient dispatches

• Widely used in GUIs, including AWT

Request objects, asking to perform encoded operation

• Used in distributed object systems — RMI and CO

Class objects (normally via .class files)

• Recipient creates instance of class

• Used in Java Applet framework

Runnable commands

• Basis for thread instantiation, mobile code systems

9

Sample Socket-based Server

RT);
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

class Server implements Runnable {
 public void run() {
 try {

ServerSocket socket = new ServerSocket(PO
 for (;;) {
 final Socket connection = socket.accept();
 new Thread(new Runnable() {
 public void run() {
 new Handler().process(connection);
 }}).start();
 }
 }
 catch(Exception e) { /* cleanup; exit */ }
 }
}

class Handler {
 void process(Socket s) {
 InputStream i = s.getInputStream();
 OutputStream o = s.getOutputStream();
 // decode and service request, handle errors
 s.close();
 }
}

10

Thread-per-Request Characteristics

verhead
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

+ Simple semantics

• When in doubt, make a new thread

- Potentially high overhead

• Thread start-up overhead impedes host availability

• Higher context switch and scheduling overhead

- Little or no resource or scheduling control

• Potential resource exhaustion

• Live with default saturation characteristics

Alternative designs can be attractive even on JVMs where o
is relatively low

11

Worker Threads

mmand,
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Establish a producer-consumer chain

Producer

Service method just places task in a channel

Channel might be a buffer, queue, stream, etc

Task might be represented by a Runnable co
event, etc

Consumer

Host contains an autonomous loop thread of form:

 while (!Thread.interrupted()) {
 task = channel.take();
 process(task);
 }

12

Worker Thread Example

r

C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

interface Channel { // buffer, queue, stream, etc
 void put(Object x);
 Object take();
}

class Host { //...
 Channel channel = ...;
 public void serve(...) {
 channel.put(new Runnable() { // enqueue
 public void run(){
 handler.process(...);
 }});
 }

Host() { // Set up worker thread in constructo
 // ...
 new Thread(new Runnable() {
 public void run() {
 while (!Thread.interrupted())
 ((Runnable)(channel.take())).run();
 }
 }).start();
 }
}

13

Channel Options

rs

s task

me out
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Unbounded queues

• Can exhaust resources if clients faster than handle

Bounded buffers

• Can cause clients to block when full

Synchronous channels

• Force client to wait for handler to complete previou

Leaky bounded buffers

• For example, drop oldest if full

Priority queues

• Run more important tasks first

Streams or sockets

• Enable persistence, remote execution

Non-blocking channels

• Must take evasive action if put or take fail or ti

14

 Thread Pools

andler

andler

andler

andler
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Use a collection of worker threads, not just one

In simplest cases, set up via a loop in host constructor

But normally, encapsulate as Pool class

h

channel

put

take

h

client

h

h

host

15

Worker Thread Characteristics

es

read

tics

ads

hread
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

+ Tunable semantics and structure

- Somewhat greater coding complexity

• Requires some Java-level duplication of VM servic

+ Less delegation overhead

• Create and hand off task object instead of new Th

- May require more work to maintain liveness

• Queued tasks do not run

• Need to implement saturation policies

+ Enables bounding of resource usage

• Can match resource usage to platform characteris

- May waste threads

- May violate assumptions equating activities with Thre

• Need caution with class java.lang.ThreadLocal

• Can mask locking errors since Java locks are per-t

16

Default Worker Thread Pool Policies

tter

f

-to-live
r

C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Need conservative default policies

• Choose alternatives only when sure you can do be

No queuing

• Avoid lockups due to queued tasks not running

• Usually, the VM can schedule better than you can

• Requires:

— Synchronous channels

— Relatively large maximum pool bounds

Run-when-blocked saturation policy

• If cannot immediately hand off, host runs task itsel

• Usually, the most graceful degradation policy

Dynamic worker thread management

• Lazy construction

• Allow worker threads to die if idle longer than time
threshold. Lazily replace with others if needed late

17

Pools in Connection-Based Designs

w active

worker

worker

worker

task

Pool
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Increasingly common architecture:

• Many open connections (sockets), but relatively fe
at any given time

• Service tasks triggered by input on connection

Multiplex the delegations to worker threads via polling

Main

serve() {
 accept connection

}

poll() {

 for each connection
 if input available
 generate task
}

for(;;) {

}

 add to polled set

task

task

task

Queue

Multiplex

18

Event-Driven Tasks

E);
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

class IOEventTask implements Runnable {
 final Socket socket;
 final InputStream input;
 volatile boolean done = false;

 IOEventTask(Socket s) throws IOException {
 socket = s; input = socket.getInputStream();
 }

 public void run() {
 if (done) return;
 byte[] commandBuffer = new byte[BUFFSIZE];
 try {

int bytes = input.read(commandBuffer, 0, BUFFSIZ
 if (bytes != BUFFSIZE) done = true;
 else processCommand(commandBuffer, bytes);
 }
 catch (IOException ex) { cleanup(); done = true; }
 finally {
 if (!done) return;
 try { input.close(); socket.close(); }
 catch(IOException ignore) {}
 }
 }
}

19

Parallel Decomposition

rt

able task.

l size on

all)
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Goal: Minimize service times by exploiting parallelism

Approach:

Partition into subproblems

Break up main problem into several parts. Each pa
should be as independent as possible.

Create subtasks

Construct each solution to each part as a Runn

Fork subtasks

Feed subtasks to pool of worker threads. Base poo
number of CPUs or other resource considerations.

Join subtasks

Wait out processing of as many subtasks (usually
needed to compose solution

Compose solution

Compose overall solution from completed partial
solutions. (aka reduction , agglomeration)

20

Fork/Join Parallelism

C

o
n

c
u

r
r

e
n

t

P
r

o
g

r
a

m
m

i
n

g

i
n

J

a
v

a

Main task must help synchronize and schedule subtasks

public Result serve(Problem problem) {
 SPLIT the problem into parts;

 FORK:
 for each part p
 create and start task to process p;

 JOIN:
 for each task t
 wait for t to complete;

 COMPOSE and return aggegrate result;
}

main subtasks

fork

join

serve

return

21

Fork/Join with Worker Threads

worker

worker

worker

worker
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Similar advantages and disadvantages as before

But further opportunities to improve performance

• Exploit simple scheduling properties of fork/join

• Exploit simple structure of decomposed tasks

Main

... tasktask

serve() {
 split;
 fork;
 join;
 compose;
}

22

Granularity

ks

ive

ossible

entage
ds to

sible

ing
sk
alls.

on
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

How big should each task be?

Approaches and answers differ for different kinds of tas

• Computation-intensive, I/O-intensive, Event-intens

Focus here on computation-intensive

Two opposing forces:

To maximize parallelism, make each task as small as p

• Improves load-balancing, locality, decreases perc
of time that CPUs idly wait for each other, and lea
greater throughput

To minimize overhead, make each task as large as pos

• Creating, enqueing, dequeing, executing, maintain
status, waiting for, and reclaiming resources for Ta
objects add overhead compared to direct method c

Must adopt an engineering compromise:

Use special-purpose low-overhead Task frameworks

Use parameterizable decomposition methods that rely
sequential algorithms for small problem sizes

23

A Task Framework

 objects

n

n
task
o run
one
run t
ork+join
oin all
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Fork/Join Task objects can be much lighter than Thread

• No blocking except to join subtasks

— Tasks just run to completion

— Cannot enforce automatically, and short-duratio
blocking is OK anyway.

• Only internal bookkeeping is completion status bit.

• All other methods relay to current worker thread.

abstract class FJTask implements Runnable {
 boolean isDone(); // True after task is ru
 void fork(); // Start a dependent

static void yield(); // Allow another task t
 void join(); // Yield until isD
 static void invoke(Task t); // Directly
 static void coInvoke(Task t,Task u); // F
 static void coInvoke(Task[] v); // Fork+j
 void reset(); // Clear isDone
 void cancel(); // Force isDone
} // (plus a few others)

24

Fork/Join Worker Thread Pools

 CPU

d to map

es

ueue

lients

k-based

ask first)
e

C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

This framework tuned for computation-intensive tasks

• Here, normally best to have one worker thread per

— Some multiprocessor JVMs can be encourage
this way via startup settings

• But design is robust. It scarcely hurts (and sometim
scarcely helps) to have more workers than CPUs

Uses per-thread queuing with work-stealing

• Each task is queued in current worker thread’s deq
(double-ended queue)

— Plus a global entry queue for new tasks from c

• Workers run tasks from their own dequeues in stac
LIFO (i.e., newest task first) order.

• If a worker is idle, it steals a task, in FIFO (oldest t
order from another thread’s dequeue or entry queu

25

Work-Stealing

ning

dequeue

queue

dequeue

dling

lding
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Original algorithm devised in
Cilk project (MIT)

• Several variants

• Shown to scale on
stock MP hardware

Leads to very portable
application code

Typically, the only
platform-dependent
parameters are:

• Number of worker
threads

• Problem threshold
size for using
sequential solution

Works best with recursive
decomposition

worker

run

fork

worker

steal

de

worker

exec

i

yie

26

Framework Performance

300 CPU

ithout
rs

 of
ially
n

Thread

e to build
rks.
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Extremely well-tuned to fork/join designs (only!)

• Fork/join only 4 to 10 times slower than direct call

• Can run 7.5million minimal tasks per second on 4x
Enterprise450

• Supports task granularities of < 1000 instructions w
noticeably degrading performance on uniprocesso

— This is conveniently in the range where the use
special parallelization tools would not be espec
helpful. Instead rely on conformance to commo
decomposition patterns

Probably impossible to obtain this performance for class
itself.

• No matter how fast Threads are, it is still attractiv
lighter-weight special-purpose executable framewo

• Unless standardized versions of these lightweight
executable frameworks are also supported.

27

Recursive Decomposition

duling

r many

allelize
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Typical algorithm:

 Result solve(Param problem) {
 if (problem.size <= GRANULARITY_THRESHOLD)
 return directlySolve(problem);
 else {
 in-parallel {
 Result l = solve(lefthalf(problem));
 Result r = solve(rightHalf(problem);
 }
 return combine(l, r);
 }
 }

Why?

Support tunable granularity thresholds

Under work-stealing, the algorithm itself drives the sche

There are known recursive decomposition algorithms fo
computationally-intensive problems.

Some are explicitly parallel, others are easy to par

28

Example: Fibonacci

ics

stant
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

A useless algorithm, but easy to explain!

Sequential version:

int seqFib(int n) {
 if (n <= 1)
 return n;
 else
 return seqFib(n-1) + seqFib(n-2);
}

To parallelize:

• Replace function with Task subclass

— Hold arguments/results as instance vars

— Define run() method to do the computation

• Replace recursive calls with fork/join Task mechan

— Task.coinvoke is convenient here

• But rely on sequential version for small values of n

Threshold value usually an empirical tuning con

29

Class Fib

nd result
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

class Fib extends Task {
volatile int number; // serves as arg a

 Fib(int n) { number = n; }

 public void run() {
 int n = number;
 if (n <= 1) { /* do nothing */ }

else if (n <= sequentialThreshold) //(12 works)
 number = seqFib(n);
 else {
 Fib f1 = new Fib(n - 1); // split
 Fib f2 = new Fib(n - 2);
 coInvoke(f1, f2); // fork+join
 number = f1.number + f2.number; // compose
 }
 }

 int getAnswer() { // call from external clients
 if (!isDone())
 throw new Error("Not yet computed");
 return number;
 }
}

30

Fib Server

C

o
n

c
u

r
r

e
n

t

P
r

o
g

r
a

m
m

i
n

g

i
n

J

a
v

a public class FibServer { // Yes. Very silly
 public static void main(String[] args) {
 TaskRunnerGroup group = new
 TaskRunnerGroup(Integer.parseInt(args[0]));
 ServerSocket socket = new ServerSocket(1618);
 for (;;) {
 final Socket s = socket.accept();

 group.execute(new Task() {
 public void run() {
 DataInputStream i = new
 DataInputStream(s.getInputStream());
 DataOutputStream o = new
 DataOutputStream(s.getOutputStream());
 Fib f = new Fib(i.readInt());
 invoke(f);
 o.writeInt(f.getAnswer());
 s.close()

 });
 }
 }
 }
} // (Lots of exception handling elided out)

31

Computation Trees

s in

slower

teal
sy for a
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Recursive computation meshes well with work-stealing:

• With only one worker thread, computation proceed
same order as sequential version

— The local LIFO rule is same as, and not much
than recursive procedure calls

• With multiple threads, other workers will typically s
larger, non- leaf subtasks, which will keep them bu
while without further inter-thread interaction

f(4)

f(3)

f(2)

f(1)

f(2)

f(0)

f(1) f(1) f(0)

32

Iterative Computation

do:

tions;

ulation
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Many computation-intensive algorithms have structure:

Break up problem into a set of tasks, each of form:

• For a fixed number of steps, or until convergence,

— Update one section of a problem;

— Wait for other tasks to finish updating their sec

Examples include mesh algorithms, relaxation, physical sim

Illustrate with simple Jacobi iteration, with base step:

void oneStep(double[][] oldM, double[][] newM,
 int i, int j) {
 newM[i][j] = 0.25 * (oldM[i-1][j] +
 oldM[i][j-1] +
 oldM[i+1][j] +
 oldM[i][j+1]);
}

Where oldM and newM alternate across steps

33

Iteration via Computation Trees

ons

ter

ization
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Explicit trees avoid repeated problem-splitting across iterati

Allow Fork/Join to be used instead of barrier algorithms

For Jacobi, can recursively divide by quadrants

• Leaf nodes do computation;

Leaf node size (cell count) is granularity parame

• Interior nodes drive task processing and synchron

34

Jacobi example

check
C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a abstract class Tree extends Task {

 volatile double maxDiff; //for convergence
}

class Interior extends Tree {
 final Tree[] quads;

 Interior(Tree q1, Tree q2, Tree q3, Tree q4) {
 quads = new Tree[] { q1, q2, q3, q4 };
 }

 public void run() {
 coInvoke(quads);
 double md = 0.0;
 for (int i = 0; i < 4; ++i) {
 md = Math.max(md,quads[i].maxDiff);
 quads[i].reset();
 }
 maxDiff = md;
 }
}

35

Leaf Nodes

C

o
n

c
u

r
r

e
n

t

P
r

o
g

r
a

m
m

i
n

g

i
n

J

a
v

a

class Leaf extends Tree {
 final double[][] A; final double[][] B;
 final int loRow; final int hiRow;

final int loCol; final int hiCol; int steps = 0;
 Leaf(double[][] A, double[][] B,
 int loRow, int hiRow,
 int loCol, int hiCol) {
 this.A = A; this.B = B;
 this.loRow = loRow; this.hiRow = hiRow;
 this.loCol = loCol; this.hiCol = hiCol;
 }
 public synchronized void run() {
 boolean AtoB = (steps++ % 2) == 0;
 double[][] a = (AtoB)? A : B;
 double[][] b = (AtoB)? B : A;
 for (int i = loRow; i <= hiRow; ++i) {
 for (int j = loCol; j <= hiCol; ++j) {
 b[i][j] = 0.25 * (a[i-1][j] + a[i][j-1] +
 a[i+1][j] + a[i][j+1]);
 double diff = Math.abs(b[i][j] - a[i][j]);
 maxDiff = Math.max(maxDiff, diff);
 }
 }
} }

36

Driver

C

o
n

c
u

r
r

e
n

t

P
r

o
g

r
a

m
m

i
n

g

i
n

J

a
v

a

class Driver extends Task {
 final Tree root; final int maxSteps;
 Driver(double[][] A, double[][] B,
 int firstRow, int lastRow,
 int firstCol, int lastCol,
 int maxSteps, int leafCells) {
 this.maxSteps = maxSteps;
 root = buildTree(/* ... */);
 }

 Tree buildTree(/* ... */) { /* ... */}

 public void run() {
 for (int i = 0; i < maxSteps; ++i) {
 invoke(root);
 if (root.maxDiff < EPSILON) {
 System.out.println("Converged");
 return;
 }
 else
 root.reset();
 }
 }
}

37

Sample results

.1

ints,

acobi

1.8

.6

.6

.4

1

5

0

5

C
o

n
c

u
r

r
e

n
t

P

r
o

g
r

a
m

m
i

n
g

i

n

J
a

v
a

Enterprise 3500, 8x336 CPUs, Solaris 7, Production VM 1.2

Tests:

• Fib 40, Multiply 1024x1024 matrix, Sort 40 million
Jacobi with 100 iterations on 2048x2048 matrix

Times in seconds to nearest tenth, medians of 3 runs

Threads Fib MatMul Sort J

1 21.5 40.7 79.8 11

2 10.7 20.4 39.7 56

3 7.2 13.6 27.0 38

4 5.4 10.3 20.2 29

5 4.4 8.2 16.3 24.

6 3.6 6.9 13.8 20.

7 3.1 5.9 11.9 18.

8 2.9 5.2 10.7 16.

C o n c u r r e n t P r o g r a m m i n g i n J a v a

38
S
peedups

39

Summary

C

o
n

c
u

r
r

e
n

t

P
r

o
g

r
a

m
m

i
n

g

i
n

J

a
v

a

Scalable service designs rely on

• Reactive hosts

• Task-based Delegation

• Task-based Decomposition

• Resource-conscious programming

• Scalable infrastructure — VM, OS, hardware

	Outline
	Improving Service Performance
	Asynchronously Delegated Services
	Major Design Forces
	Delegation using Open Calls
	Thread-per-Request Delegation
	Messages and Tasks in Java
	Sample Socket-based Server
	Thread-per-Request Characteristics
	Worker Threads
	Worker Thread Example
	Channel Options
	Thread Pools
	Worker Thread Characteristics
	Default Worker Thread Pool Policies
	Pools in Connection-Based Designs
	Event-Driven Tasks

	Parallel Decomposition
	Fork/Join Parallelism
	Fork/Join with Worker Threads
	Granularity
	A Task Framework
	Fork/Join Worker Thread Pools
	Work-Stealing
	Framework Performance
	Recursive Decomposition
	Example: Fibonacci
	Class Fib
	Fib Server
	Computation Trees
	Iterative Computation
	Iteration via Computation Trees
	Jacobi example
	Leaf Nodes
	Driver
	Sample results
	Speedups
	Summary

