
Part II

A peek at Clojure's
Persistent Data Structures

09/09/09 Clojure's Persistent Data Structures, kkr@trifork.com 2

Persistent Data Structures

● Clojure Persistent Data Structures (PDSs)
● are immutable
● efficient operations that take as input a PDS, and

produce as output a ”similar” PDS
– e.g., ”assoc(K, V)”: if P is a persistent hash map, create a

persistent hash map Q which has the same entries as P,
and additionally maps key K to value V.

– The input and output structures share most of their data
structure (which is efficient and safe)

– The input is still available after the operation

09/09/09 Clojure's Persistent Data Structures, kkr@trifork.com 3

clojure.lang.PersistentHashMap

● Implements the classical ”hash map” data
structure
● Fast hashed access,

– IMapEntry entryAt(Object key)

● Fast put operation,
– IPersistentMap assoc(Object key, Object val)

● Implemented with a wide tree to share structure
● Operations are fast constant-time in practice

09/09/09 Clojure's Persistent Data Structures, kkr@trifork.com 4

Structure

● Rich Hickey created a persistent version of Phil
Bagwell's ”Array-mapped hash trie.”

● Overall structure is a wide tree where there are
5 kinds of nodes, implementing interface INode:

● EmptyNode, LeafNode, FullNode
● HashCollisionNode

● BitmapIndexedNode (<= this is most important)

static interface INode{
INode assoc(int shift, int hash, Object key, Object val, Box addedLeaf);
INode without(int hash, Object key);
LeafNode find(int hash, Object key); //and more...

}

09/09/09 Clojure's Persistent Data Structures, kkr@trifork.com 5

Node ”lifecycle:” assoc (put)

● The root node of the tree is initially an
EmptyNode.

● LeafNodes hold elements stored in map

● Here we do not consider HashCollisionNodes,
or FullNodes
● Special cases; go read the source ;-)

● An EmptyNode produces a LeafNode with assoc

● A LeafNode typically becomes a
BitmapIndexedNode

09/09/09 Clojure's Persistent Data Structures, kkr@trifork.com 6

Bit partitioning

● Use partitioning of Java bit-representation of
hash code.
● Partition in blocks of 5.
● Each block corresponds to a level in the tree

● A block is also number in [0,31]
● Exampes
 1: [00][00000][00000][00000][00000][00000][00001]

 234: [00][00000][00000][00000][00000][00111][01010]

 1258: [00][00000][00000][00000][00001][00111][01010]

09/09/09 Clojure's Persistent Data Structures, kkr@trifork.com 7

Bit-partitioned Hash Trie
(slide by Rich Hickey)

LeafNode

BitmapIndexedNode

Level
0

5

10

15

20

09/09/09 Clojure's Persistent Data Structures, kkr@trifork.com 8

BitmapIndexedNode

● Holds an array of size < 32, pointing to children
● Hard-part is to only use as much space as is

needed:
● If node has n children, only use size n array;

● and, doing a lookup on a BitmapIndexedNode
to find a child must be fast constant time

● The trick is to find an efficiently computable
function to map between a 5-bit number (i.e., a
bit block) and index, 0 ≤ i < n in child array

09/09/09 Clojure's Persistent Data Structures, kkr@trifork.com 9

BitmapIndexedNode: The bitmap

● Consider the mapping
● bitpos: [0, 31] => {10n | n ≥ 0} (binary rep).

– bitpos(n) = 10n

● e.g., 13 which is bit-pattern 01101 becomes
bitpos(011001) = 00000010000000000000

● A bitmap is maintained which is a bit-pattern
● e.g., 00000100000001100010001000000001
● so that if i'th bit is a 1 then there is a child

with bitpos 10i

09/09/09 Clojure's Persistent Data Structures, kkr@trifork.com 10

Bitmap: Index

● For a given bitmap, e.g.,
● 00000100000001100100001000000001

● The index of an element, say with bitpos:
● 00000000000001000000000000000000

● Is the number of 1's below this bitpos, in the
bitmap,
● in the above example: 4.

● On many modern processors there is an
instruction CTPOP (count population)

09/09/09 Clojure's Persistent Data Structures, kkr@trifork.com 11

In code
static int mask(int hash, int shift){

return (hash >>> shift) & 0x01f;
}

static int bitpos(int hash, int shift){
return 1 << mask(hash, shift);

}
final int index(int bit){

return Integer.bitCount(bitmap & (bit - 1));
}

public LeafNode find(int hash, Object key){
int bit = bitpos(hash, shift);
if((bitmap & bit) != 0)

{
return nodes[index(bit)].find(hash, key);
}

else
return null;

}

09/09/09 Clojure's Persistent Data Structures, kkr@trifork.com 12

Path Copying (for PersistentHashMap)
(slide by Rich Hickey)

09/09/09 Clojure's Persistent Data Structures, kkr@trifork.com 13

References

● The code ;-)
● My blog for a longer description

● http://blog.higher-order.net

● PersistentHashMap
● http://blog.higher-order.net/2009/09/08/understanding-clojures-persistenthashmap-deftwice/

● PersistentVector
●

http://blog.higher-order.net/2009/02/01/understanding-clojures-persistentvector-implementation/

http://blog.higher-order.net/
http://blog.higher-order.net/2009/09/08/understanding-clojures-persistenthashmap-deftwice/
http://blog.higher-order.net/2009/02/01/understanding-clojures-persistentvector-implementation/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

