
Cl jure

Meta

● Talk-structure and many slides and stolen from
Rich Hickey ;-)

see http://clojure.org/

● Thanks to Azul Systems for letting us play with
their cool tech.

● See http://www.azulsystems.com/

● Thanks to Cliff Click for helping out, and letting
me use his program to reproduce his Clojure
experiments from JavaOne 2009.

● http://blogs.azulsystems.com/cliff/

http://clojure.org/
http://www.azulsystems.com/
http://blogs.azulsystems.com/cliff/

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 3

Clojure in one slide

● Functional language
● Immutabiltity via persistent data structures

● A new, very general LISP family member
● Dynamic, syntactic abstraction

● On-the-fly compilation to JVM bytecode
● Deep two-way Java interop.; idiomatic using Java

● Focus on and support for Concurrency
● A unique concurrent programming model

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 4

Why Clojure?

● Designed to embrace the Host: JVM(s)
● Contrast to ”ports”: e.g., JRuby, Jython
● Other natives: Groovy, Scala

● Expressive, elegant, extensible

● Good performance
● e.g. Cliff Click:

http://www.azulsystems.com/events/javaone_2009/session/2009_J1_JVMLang.pdf

● Wrapper-free Java access; use Clojure in Java

● Unique lock-free concurrency model

http://www.azulsystems.com/events/javaone_2009/session/2009_J1_JVMLang.pdf

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 5

Agenda

● Introduction to Clojure
● Way to much to cover in one hour!

● In depth with persistent data structures
● ”secret sauce” of Clojure (according to Hickey :-)

● Concurrent TSP solution using Azul Box
● Azul Systems, ”Vega-3”, 864 core, 364 GB Ram!!!

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 6

A dynamic language

● Dynamically typed
● Flexibility, productivity, concision

● Interactive development
● Read-Evaluate-Print-Loop (REPL)
● Introspection

● Although: No extensible base-classes like Ruby
● Shares types with Java, e.g., String

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 7

A new LISP

● Core is extremely simple and small

● Code-as-data
● Compiler defined in terms of data structures not text

● Macros, i.e., syntactic abstraction
● User-defined functions extending compiler (DSLs!)

● NEW: very functional; concurrency semantics

● NEW: Programs composed of all types of DS

● NEW: Abstract sequences generalize lists

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 8

Atomic Data Types*

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 9

Data Structure Literals*

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 10

Traditional evaluation model*

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 11

Clojure evaluation model*

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 12

Syntax

● That's it :-)
● Homoiconicity

● Of form: parenthesized list with operator first
● (op a1 a2 …)

● 'op' is either
● Special op, e.g. def, .x (?), ref... (12 (14) total)
● Macro, e.g. doto, with-open, user-defined
● Function/callable-exps, e.g. list, conj, user-defined

● 'op' determines what the compiler does

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 13

More on Macros

● Defined similarly to a function, defmacro

● When called, args as passed unevaluated!

● Difference with functions?
● There are cases where you want to control

evaluation of arguments
– Language constructs, DSLs

● Want more flexible syntax

● Sometimes you only need H-O functions

(or exp1 exp2)
 ;=>
(let [x exp1]
 (if x x exp2))

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 14

Macro Example

(println
 (with-open [s (.getResourceAsStream String "/x.properties")]
 (into {} (doto (java.util.Properties.) (.load s)))))

import java.io.*;
import java.util.*;
public class WithOpenStreamShort {
 public static void main(String[] args) throws IOException {

InputStream st = null;
try {
 st = String.class.getResourceAsStream("/x.properties");
 Properties p = new Properties();
 p.load(st);
 System.out.println(new HashMap(p));
} finally {
 if (st != null) {

 st.close();
 }

}
 }
}

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 15

Example: Defining macros

(defmacro with-open
"modified version of with-open"

 [bindings body]
 `(let ~bindings
 (try ~body
 (finally
 (if ~(bindings 0) (. ~(bindings 0) close))))))

● Syntax-quote: `

● gen-sym: x#

● Unquote: ~
● macroexpand is your friend

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 16

Sequences

● Lift the first/rest abstraction off of concrete lists

● Function seq
● (seq coll) gives nil if empty otherwise a seq on coll
● first, calls seq on arg if not already a seq

– returns first item or nil
● rest, calls seq on arg if not already a seq

– returns the next seq, if any, else nil

● Most library functions are fully lazy

● Vast library works on: all Clojure DS, Java: Strings,
arrays, collections, iterables

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 17

Sequence Library*

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 18

Maps and Sets*

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 19

Java Interoperability

● At the level of types

● Core library

● Language level (syntax!!, wrapper-free use)

● At level of instances (proxy and new)

● At level of classess (gen-class, compile)

● Extensible by design

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 20

Language Level

● 'Syntax' (built-ins and core macros)
● new, try, set!, .

● .., doto, with-open, instance?, …

● Wrapper-free access (import or ns)

 (import '(java.util StringTokenizer))

 (.nextToken (new StringTokenizer "r,i,c,h" ","))

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 21

Clojure Concurrency Model

● Functional Programming:

”The philosophy behind Clojure is that most parts of most
programs should be functional, and that programs that are more
functional are more robust.”

● Indirect references to immutable data
● Explicit reference types (inspired by SML's ref)
● Only references mutate (not data)

– Mutation, is system-controlled, always atomic
● Efficient immutability with persistent data structures
● New state is computed as functions of the old state

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 22

Traditional OO approach:
Direct References to Mutable Objects*

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 23

Clojure Approach:
Indirect References to Immutable Objects*

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 24

Persistent 'Edit'*

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 25

Atomic Update*

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 26

Clojure References*

● Only references mutate: in a controlled way

● 4 types of references, all with concurrency
semantics:
● Vars: shared root binding, isolate changes in thread
● Refs: synchronous, coordinated
● Atoms: synchronous, independent
● Agents: asynchronous, independent

● deref or reader-macro @ to get value (not vars)

● Different mutator functions for each type

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 27

Refs and Transactions*

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 28

The Clojure STM*

Almost...
STM can be
configured
to control
history-size

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 29

Summary

● Clojure is written for JVMs
● Excellent Java interop; leverages JVM tech.

● Concurrency focus and support
● refs, agents, atoms, vars; STM

● Functional programming
● Immutability via Persistent Data Structures

● Lisp
● Syntactic abstraction, dynamic

● More! Multimethods, ad-hoc hierarchies, meta-data,
transients, chunked-seqs, AOT compilation, watchers..

09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 30

References

● http://clojure.org has excellent documentation

● www.clojure.dk Danish Clojure Users' Group – signup, meet-up; read, write about Clojure

● Hours of video: http://clojure.blip.tv/

● Rich Hickey is a great speaker!

● JAOO Aarhus 2009, Oct. 5-7th

● http://jaoo.dk/aarhus-2009/speaker/Rich+Hickey

● Introducing Clojure, The Clojure Concurrency Story, Concurrency Expert Panel

● Stuart Halloway, Programming Clojure (www.pragprog.com)

● Mark Volkmann, STM article

● http://java.ociweb.com/mark/stm/article.html

● I blog about Clojure (and other tech stuff :-)

● http://blog.higher-order.net

http://clojure.org/
http://www.clojure.dk/
http://clojure.blip.tv/
http://jaoo.dk/aarhus-2009/speaker/Rich+Hickey
http://www.pragprog.com/
http://java.ociweb.com/mark/stm/article.html
http://blog.higher-order.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

