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Meta

● Talk-structure and many slides and stolen from 
Rich Hickey ;-)

see http://clojure.org/ 

● Thanks to Azul Systems for letting us play with 
their cool tech.

● See http://www.azulsystems.com/ 

● Thanks to Cliff Click for helping out, and letting 
me use his program to reproduce his Clojure 
experiments from JavaOne 2009.

● http://blogs.azulsystems.com/cliff/ 

http://clojure.org/
http://www.azulsystems.com/
http://blogs.azulsystems.com/cliff/
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Clojure in one slide

● Functional language
● Immutabiltity via persistent data structures

● A new, very general LISP family member
● Dynamic, syntactic abstraction

● On-the-fly compilation to JVM bytecode
● Deep two-way Java interop.; idiomatic using Java

● Focus on and support for Concurrency
● A unique concurrent programming model
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Why Clojure?

● Designed to embrace the Host: JVM(s)
● Contrast to ”ports”: e.g., JRuby, Jython
● Other natives: Groovy, Scala

● Expressive, elegant, extensible

● Good performance
● e.g. Cliff Click: 

http://www.azulsystems.com/events/javaone_2009/session/2009_J1_JVMLang.pdf

● Wrapper-free Java access; use Clojure in Java

● Unique lock-free concurrency model

http://www.azulsystems.com/events/javaone_2009/session/2009_J1_JVMLang.pdf
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Agenda

● Introduction to Clojure 
● Way to much to cover in one hour!

● In depth with persistent data structures
● ”secret sauce” of Clojure (according to Hickey :-)

● Concurrent TSP solution using Azul Box
● Azul Systems, ”Vega-3”, 864 core, 364 GB Ram!!!
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A dynamic language

● Dynamically typed
● Flexibility, productivity, concision 

● Interactive development
● Read-Evaluate-Print-Loop (REPL)
● Introspection

● Although: No extensible base-classes like Ruby 
● Shares types with Java, e.g., String
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A new LISP

● Core is extremely simple and small

● Code-as-data 
● Compiler defined in terms of data structures not text

● Macros, i.e., syntactic abstraction
● User-defined functions extending compiler (DSLs!)

● NEW: very functional; concurrency semantics 

● NEW: Programs composed of all types of DS

● NEW: Abstract sequences generalize lists



09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 8

Atomic Data Types*
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Data Structure Literals*
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Traditional evaluation model*
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Clojure evaluation model*
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Syntax

● That's it :-) 
● Homoiconicity

● Of form: parenthesized list with operator first
● (op a1 a2 … )

● 'op' is either 
● Special op, e.g. def, .x  (?), ref... (12 (14) total)
● Macro, e.g. doto, with-open, user-defined
● Function/callable-exps, e.g.  list, conj, user-defined

● 'op' determines what the compiler does
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More on Macros

● Defined similarly to a function, defmacro

● When called, args as passed unevaluated!

● Difference with functions?
● There are cases where you want to control 

evaluation of arguments
– Language constructs, DSLs

● Want more flexible syntax

● Sometimes you only need H-O functions

(or exp1 exp2) 
  ;=>
(let [x exp1] 
    (if x x exp2))
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Macro Example

(println 
  (with-open [s (.getResourceAsStream String "/x.properties")]
       (into {} (doto (java.util.Properties.) (.load s)))))

import java.io.*;
import java.util.*;
public class WithOpenStreamShort {
 public static void main(String[] args) throws IOException {

InputStream st = null;
try {
    st = String.class.getResourceAsStream("/x.properties");
    Properties p = new Properties();
    p.load(st);
    System.out.println(new HashMap(p));
} finally {
    if (st != null) {

    st.close();
        }

}
 }
}
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Example: Defining macros

(defmacro with-open 
"modified version of with-open"

  [bindings body]
   `(let ~bindings
      (try ~body
         (finally
            (if ~(bindings 0) (. ~(bindings 0) close))))))

● Syntax-quote: ` 

● gen-sym: x#

● Unquote: ~
● macroexpand is your friend
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Sequences

● Lift the first/rest abstraction off of concrete lists

● Function seq
● (seq coll) gives nil if empty otherwise a seq on coll
● first, calls seq on arg if not already a seq 

– returns first item or nil
● rest, calls seq on arg if not already a seq

–  returns the next seq, if any, else nil

● Most library functions are fully lazy

● Vast library works on: all Clojure DS, Java: Strings, 
arrays, collections, iterables
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Sequence Library*
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Maps and Sets*



09-09-09 Karl Krukow, kkr@trifork.com. * = slide by Rich Hickey. 19

Java Interoperability

● At the level of types

● Core library

● Language level (syntax!!, wrapper-free use)

● At level of instances (proxy and new)

● At level of classess (gen-class, compile)

● Extensible by design
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Language Level

● 'Syntax' (built-ins and core macros)
● new, try, set!,  . 

● .., doto, with-open, instance?, … 

● Wrapper-free access (import or ns)

   (import '(java.util StringTokenizer)) 

      (.nextToken (new StringTokenizer "r,i,c,h" ","))
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Clojure Concurrency Model

● Functional Programming:

”The philosophy behind Clojure is that most parts of most 
programs should be functional, and that programs that are more 
functional are more robust.” 

● Indirect references to immutable data
● Explicit reference types (inspired by SML's ref)
● Only references mutate (not data)

– Mutation, is system-controlled, always atomic 
● Efficient immutability with persistent data structures
● New state is computed as functions of the old state
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Traditional OO approach: 
Direct References to Mutable Objects*
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Clojure Approach:
Indirect References to Immutable Objects*
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Persistent 'Edit'*
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Atomic Update*
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Clojure References*

● Only references mutate: in a controlled way

● 4 types of references, all with concurrency 
semantics:
● Vars: shared root binding, isolate changes in thread 
● Refs: synchronous, coordinated  
● Atoms: synchronous, independent
● Agents: asynchronous, independent

● deref or reader-macro @ to get value (not vars)

● Different mutator functions for each type
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Refs and Transactions*
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The Clojure STM*

Almost...
STM can be 
configured 
to control 
history-size
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Summary

● Clojure is written for JVMs
● Excellent Java interop; leverages JVM tech.

● Concurrency focus and support 
● refs, agents, atoms, vars; STM

● Functional programming 
● Immutability via Persistent Data Structures

● Lisp
● Syntactic abstraction, dynamic

● More! Multimethods, ad-hoc hierarchies, meta-data, 
transients, chunked-seqs, AOT compilation, watchers..
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References

● http://clojure.org has excellent documentation

● www.clojure.dk Danish Clojure Users' Group – signup, meet-up; read, write about Clojure

● Hours of video: http://clojure.blip.tv/ 

● Rich Hickey is a great speaker!

● JAOO Aarhus 2009, Oct. 5-7th 

● http://jaoo.dk/aarhus-2009/speaker/Rich+Hickey 

● Introducing Clojure, The Clojure Concurrency Story, Concurrency Expert Panel

● Stuart Halloway, Programming Clojure (www.pragprog.com)

● Mark Volkmann, STM article

● http://java.ociweb.com/mark/stm/article.html 

● I blog about Clojure (and other tech stuff :-)  

● http://blog.higher-order.net

http://clojure.org/
http://www.clojure.dk/
http://clojure.blip.tv/
http://jaoo.dk/aarhus-2009/speaker/Rich+Hickey
http://www.pragprog.com/
http://java.ociweb.com/mark/stm/article.html
http://blog.higher-order.net/
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