DSLs in JavaScript

Nathaniel T. Schutta

Who am |?

® Nathaniel T. Schutta
http://www.ntschutta.com/jat/

® Foundations of Ajax & Pro Ajax and Java
Frameworks

® Ul guy

® Author, speaker, teacher

® More than a couple of web apps

The Plan

e DSLs?
® |avaScript! Seriously?
® Examples

® | essons Learned

DS what now?

Domain Specific Language.

Every domain has its

own language.

“Part of the benefit of being
"1nto" something 1s having an
1nsider lexicon.”

Kathy Sierra
Creating Passionate Users

http://headrush.typepad.com/creating passionate users/2006/1 |/why web 20 is_m.html

Three quarter, knock

down, soft cut.

Scattered, smothered,

covered.

Large skim mocha, no

whip no froth.

Not general purpose.

Simpler, more limited.

Expressive.

$$C' .header').each(function(el) {el.observe("click", toggleSection)});

Not a new idea.

Little languages.

Build the language up...

Lots of attention today.

Ruby is very hospitable.

So are other languages ;)

Internal vs. External.

Internal.

Within an existing language.

More approachable.

Simpler.

No grammars, parsing, etc.

Constrained by host

language.

Flexible syntax helps!

Fluent interface.

Embedded DSLs.

External.

Create your own language.

Grammars.

Need to parse.

ANTLR, yacc, JavaCC.

Harder.

More flexibility.

Language workbenches.

Tools for creating

new languages.

Internal are more

common today.

Language workbenches -

shift afoot!?

http://martinfowler.com/articles/mpsAgree.html

http://martinfowler.com/articles/languageVVorkbench.html

Meta Programming System.

http://www.jetbrains.com/mps/

Intentional Programming

- Charles Simonyi.

http://intentsoft.com/

http://www.technologyreview.com/Infotech/18047/?a=f

http://msdn.microsoft.com/en-us/oslo/default.aspx

http://wiki.eclipse.org/Xtext

Why are we seeing DSLs?

Easier to read.

Closer to the business.

Less friction, fewer

translations.

Biz can review...

“Yesterday, I did a code
review. With a CEO...
Together, we found three
1mprovements, and a couple of

outright bugs.”

Bruce Tate
Canaries 1n the Coal Mine

http://blog.rapidred.com/articles/2006/08/30/canaries-in-the-coal-mine

Don’t expect them to

write it though!

Will we all write DSLs!?

Doesn’t mean we

can’t use them.

General advice on

building a DSL:

Write it as you'd

like it to be...

Even on a napkin!

Use valid syntax.

Iterate, iterate, iterate.

Work on the

implementation.

http://martinfowler.com/dslwip/

http://weblog.jamisbuck.org/2006/4/20/
writing-domain-specific-languages

http://memeagora.blogspot.com/2007/1 |/
ruby-matters-frameworks-dsls-and.html

http://martinfowler.com/bliki/DsIQandA.html

TN
O
'
(qv]
s
O

Z

JavaScript has been

around for a while.

Many dismissed it as

“toy for designers.”

It's not the 90s anymore.

We have tools!

Developers care again!

Suffers from the “EJB issue.”

Powerful language.

“The Next Big Language”

http://steve-yegge.blogspot.com/
2007/02/next-big-language.html

Runs on lots of platforms

- including the JVM.

Ruby like?

“Rhino on Rails”

http://steve-yegge.blogspot.com/
2007/06/rhino-on-rails.html

Orto - JVM written

in JavaScript.

http://ejohn.org/blog/running-java-in-javascript/

|S-909.

http://www.themaninblue.com/experiment/]S-909/

JS-909

@)
‘ 2 EJ http: / /www.themaninblue.com/experiment/JS-909/

Gmail delicio.us Firebug Lite

JS-909

i
.

o
- o

o N6
OO0
oN6
oN6
00
oN6
O 0
oN6

DOODOODOOD
D0 0OO00O00DO
DOOOOO0DO
DOOOOO0OD
DOOOOODO
DOODOODOOD
DOODOODOOD
DOODOODODOD
DOODOODOOD
D0 0000 0O
DOOOOODO
DOOOOODO
DOOOOODO

JavaScript testing DSL.

JSSpec? Really?

/**
* Domain Specific Languages

A
JiSSpacaDS e glle

BDD for |S.

Like RSpec.

Not quite as elegant.

describe('Plus operation', {

: o (Dl
value_of("Hello " + "World").should_be("Hello World");

I

' Lz O {
value_of(2 + 2).should_be(4);
3

)

value of!

"Hello".should_be("Hello");

No method missing.

We'd need to modify

Object’s prototype.

Generally a no-no.

Though it’s been done.

http://json.org/json.js

Null, undefined objects.

Design choice - consistency.

describe('Plus operation', {

: o (Dl
value_of("Hello " + "World").should_be("Hello World");

I

' Lz O {
value_of(2 + 2).should_be(4);
3

)

describe - global

defined in |SSpec.js.

Creates a hew

JSSpec.Spec()...

And adds it to an

array of specs.

value_of - global

defined in |SSpec.js.

value_ of - converts parm

to |SSpec.DSL.Subject

Handles arbitrary objects.

JSSpec.DSL.Subject

contains should *.

Added to prototype.

JSSpec.DSL.Subject.prototype. = function(expected) {
var matcher =
JSSpec.EqualityMatcher.createlnstance(expected,this.target);
1f(!matcher.matches()) {

JSSpec._assertionFailure = {message:matcher.explain()};
throw JSSpec._assertionFailure;

¥
h

this.target!?

JSSpec.DSL. = function(target) {
this.target = target;

%

this in JS is...interesting.

Why is everything

JSSpec.Foo!

JS lacks packages

or namespaces.

Keeps it clean.

Doesn’t collide...unless

you have |SSpec too!

Not just a DSL of course.

Defines a number

of matchers.

Also the runner

and the logger.

JSSpec results

@)
)v) I'/E\" "/?\'i l'/;\'l (u file://localhost/Users/nate/work/nfjs07 /DesigningForAjax/web/JSSpec.html?rerun=Plus operagqy v | * (@]' Google

isited v

Getting Started Latest Headlines 3

should concatenate two strings

function () {
value_of("Hello World").should_be("Hello World");

should add two numbers

function () {
value_of(4).should_be(4);

122

Some CSS to make it pretty.

~|500 lines of code.

Clean code.

Why would you use it?

Easier to read.

function O {
assertEquals("Hello World", "Hello " + "World");

¥

function ()l
assertEquals(4, 2 + 2);

I

var oTestCase = new .TestCase({
name: "Plus operation",

sEfunctiionat)
YAHOO.util.Assert.areEqual("Hello World", "Hello " + "World", "Should be 'Hello World'");

¥

s function: Qg
YAHOO.util.Assert.areEqual(4, 2 + 2, "2 + 2 should be 4");

}

describe('Plus operation', {

: e O
value_of("Hello " + "World").should_be("Hello World");

¥

' L @
value_of(2 + 2).should_be(4);
};
)

Better? Worse!?

What would you rather

read 6 months later?

http://jania.pe.kr/aw/moin.cgi/|SSpec

ActiveRecord.js

JavaScript ORM.

Seriously!?

Let’s you use a DB

from JavaScript.

Client or server ;)

Gears,AIR, W3C

HTML5 SQL spec.

In-memory option too.

Some free finder methods.

Base find method.

Migrations.

ActiveRecord.Migrations.migrations = {
4
. function(schema){
schema.createTable('one',{
a: !
b: {
type: 'TEXT',
value: 'default'

L |

el

¥

: function(schema){
schema.dropTable('one’);

}
}
he

Validations.

User.validatesPresenceOf('password’);

More to come...

Supports basic relationships.

Early stages...

On GitHub, contribute!

http://activerecordijs.org/

Objective-}

Objective-C...for JS.

JavaScript superset.

Cheating...kind of.

Native and

Objective-| classes.

Allows for instance methods.

Parameters are

separated by colons.

- (void)setJobTitle: (CPString)ajobTitle

company: (CPString)aCompany

Bracket notation for

method calls.

[myPerson setjobTitle: "Founder” company: "280 North"];

Does allow for

method_missing.

http://cappuccino.org/discuss/2008/12/08/
on-leaky-abstractions-and-objective-j/

http://cappuccino.org/

Coffee DSL.

| essons learned.

Viable option.

Widely used language.

Not necessarily easy.

Syntax isn’t as flexible.

Lots of reserved words.

Freakn ;

Hello prototype!

Verbs as first class citizens.

Object literals.

DSL vs. named parameters

VS. constructor parms.

new ('/DesigningForAjax/validate', {
asynchronous: true,
method: "get",
parameters:ifzip i SECizipl)secit e SEC aityl) ustate e SE(statelD L

: function(request) {
showResults(request.responseText);

4
)

Fail fast vs. fail silent.

Method chaining is trivial.

Context can be a challenge.

Documentation key.

PDoc,YUI Doc.

https://www.ohloh.net/p/pdoc_org

http://developer.yahoo.com/yui/yuidoc/

JavaScript isn’t a toy.

Not quite as flexible.

Plenty of metaprogramming

goodness!

Questions?!?

Thanks!

Please complete your surveys.

