
Failure Comes in Flavors
Stability Antipatterns

© Michael Nygard, 2009 1

Michael Nygard
michael@michaelnygard.com

High-Consequence
Environments

Users in the thousands and tens of thousands
24 hours a day, 365 days a year
Millions in hardware and software
Millions (or billions) in revenue
Highly interdependent systems

2

Malicious environment

Not Just the Network
Admins’ Problem

Since 2004, most successful attacks have
been those targeting the application level, not

the operating system.

4

The Failure-Oriented Mindset

5

Consider This

 10,000,000 page views per day
 × 50 assets per page
 × 3 years
= 5.47 × 1011 opportunities for error

“Six Sigma” quality produces 1,861,500 errors.

6

Another Way To Look At It

S1 - S6 = 99% available

A ≤ 94%

A

S1

S2

S3

S4

S5

S6

Still One More Way

Software Change
Quarterly releases
10 enterprise apps

120 deployments per year

Hardware Change
200 servers
3 year refresh cycle

67 server swaps per year

Deployments will happen during
a hardware change or failure.

Some of these will be in your
dependency set.

Failure is an Invariant

No matter what you do, some portion of your
application will be malfunctioning some

appreciable part of the time.

9

Stuff happens.
Expect it.

Deal with it.

Stability Antipatterns

11

Integration Points

Integrations are the #1 risk to stability.

Your first job is to protect
against integration points.
Every socket, process, pipe,
or remote procedure call
can and will eventually
kill your system.
Even database calls can
hang, in obvious and
not-so-obvious ways.

Example: Wicked database
hang

Not at all obvious: Firewall idle connection timeout
“Connection” is an abstraction.

The firewall only sees packets.

It keeps a table of “live” connections.

When the firewall sees a TCP teardown sequence, it
removes that connection from the table.

To avoid resource leaks, it will drop entries from table after idle period timeout.

Causes broken database connections after long idle period, like 2 a.m. to 5 a.m.

Simple solution: Enable “dead connection detection” (Oracle) or similar
feature to keep connection alive.
Alternative solution: timed job to periodically issue trivial query.

What about prevention?

“In Spec” vs. “Out of Spec”

“In Spec” failures
TCP connection refused
HTTP response code 500
Error message in XML
response

Example: Request-Reply using XML over HTTP

Well-Behaved Errors Wicked Errors

“Out of Spec” failures

TCP connection accepted, but no data
sent

TCP window full, never cleared

Server never ACKs TCP, causing very
long delays as client retransmits

Connection made, server replies with
SMTP hello string

Server sends HTML “link-farm” page

Server sends one byte per second

Server sends Weird Al catalog in MP3

Remember This

Beware this necessary evil.

Prepare for the many forms of failure.

Know when to open up abstractions.

Failures propagate quickly.

Large systems fail faster than small ones.

Apply “Circuit Breaker”, “Use Timeouts”, “Use
Decoupling Middleware”, and “Handshaking” to contain
and isolate failures.

Use “Test Harness” to find problems in development.

Chain Reaction

Example:
Suppose S4 goes down

S1 - S3 go from 25% of total
to 33% of total

That’s 33% more load

Each one dies faster
Failure moves horizontally
across tier
Common in search engines
and application servers

Failure in one component raises probability of failure in its peers

Remember This

One server down jeopardizes the rest.
Hunt for Resource Leaks.
Defend with “Bulkheads”.

Failure moves vertically
across tiers

Common in enterprise
services and SOAs

Failure in one system causes calling systems to be jeopardized

Example:
System S goes down, causing
calling system A to get slow or go
down.

Cascading Failure

Remember This

Prevent Cascading Failure to stop cracks
from jumping the gap.
Think “Damage Containment”
Scrutinize resource pools, they get
exhausted when the lower layer fails.
Defend with “Use Timeouts” and “Circuit
Breaker”.

Blocked Threads

Most common form of “crash”: all request threads blocked
Very difficult to test for

Combinatoric permutation of code pathways.
Safe code can be extended in unsafe ways.
Errors are sensitive to timing and difficult to reproduce
Dev & QA servers never get hit with 10,000 concurrent
requests.

Best bet: keep threads isolated. Use well-tested, high-level
constructs for cross-thread communication.

Learn to use java.util.concurrent or System.Threading

Request handling threads are precious. Protect them.

Pernicious and Cumulative

Hung request handlers reduce the server’s capacity.
Eventually, a restart will be required.
Each hung request handler indicates a frustrated
user or waiting caller
The effect is non-linear and accelerating

Each remaining thread serves 1/N-1 extra requests

Example: Blocking calls

Example:
In a request-processing method:

String key = (String)request.getParameter(PARAM_ITEM_SKU);
Availability avl = globalObjectCache.get(key);

In GlobalObjectCache.get(String id), a synchronized method:
Object obj = items.get(id);
if(obj == null) {
 obj = remoteSystem.lookup(id);
}
…

Remote system stopped responding due to “Unbalanced
Capacities”
Threads piled up like cars on a foggy freeway.

Remember This

Scrutinize resource pools. Don’t wait
forever.
Use proven constructs.
Beware the code you cannot see.
Defend with “Use Timeouts”.

Attacks of Self-Denial

Ever heard this one?
A retailer offered a great promotion
to a “select group of customers”.
Approximately a bazillion times the
expected customers show up for the
offer.
The retailer gets crushed,
disappointing the avaricious and
legitimate.

It’s a self-induced Slashdot effect.

Good marketing can kill your system at any time.

Victoria’s Secret:
Online Fashion Show

BestBuy: XBox 360
Preorder

Amazon: XBox 360
Discount

Anything on
FatWallet.com

Defending the Ramparts

Avoid deep links
Set up static landing pages
Only allow the user’s second click
to reach application servers
Allow throttling of incoming users
Set up lightweight versions of
dynamic pages.
Use your CDN to divert users
Use shared-nothing architecture

One email I saw went out
with a deep link that

bypassed Akamai. Worse,
it encoded a specific server
and included a session ID.

Another time, an email went
out with a promo code. It

could be used an unlimited
number of times.

Once a vulnerability is
found, it will be flooded

within seconds.

Remember This

Keep lines of communication open
Support the marketers. If you don’t, they’ll
invent their way around you, and might
jeopardize the systems.

Protect shared resources
Expect instantaneous distribution of exploits

Scaling Effects

Ratios in dev and QA tend to be 1:1
Web server to app server

Front end to back end

They differ wildly in production, so designs
and architectures may not be appropriate

Understand which end of the lever you are sitting on.

Example: Point to Point
Cache Invalidation

Development
Dev Server

App 1

1 server
1 local call

No TCP connections

QA

2 servers
1 local call

1 TCP connection

Production

8 servers
1 local call

7 TCP connection

QA Server 1

App 1

QA Server 2

App 2

App Server

App 1

App Server

App 2

App Server

App 3

App Server

App 4

App Server

App 5

App Server

App 6

App Server

App 7

App Server

App 8

App 1 App 2

Common

Service

App 3 App 4 App 5 App 6 App 7 App 8

Example: Shared Resources

Shared resources commonly appear as lock managers, load
managers, query distributors, cluster managers, and message

gateways. They’re all vulnerable to scaling effects.

Remember This

Examine production versus QA environments
to spot scaling effects.
Watch out for point-to-point communications.
It rarely belongs in production.
Watch out for shared resources.

Unbalanced Capacities

Online
Store

SiteScope
NYC

Customers

SiteScope
San Francisco

20 Hosts

75 Instances

3,000 Threads

Order
Management

6 Hosts

6 Instances

450 Threads

Scheduling

1 Host

1 Instance

25 Threads

Traffic floods sometimes start inside the data center walls.

Unbalanced Capacities

Unbalanced capacities is a type of scaling effect
that occurs between systems in an enterprise.
It happens because

All dev systems are one server

Almost all QA environments are two servers

Production environments may be 10:1 or 100:1

May be induced by changes in traffic or behavior
patterns

Remember This

Examine server and thread counts
Watch out for changes in traffic patterns
Stress both sides of the interface in QA
Simulate back end failures during testing

Slow Responses

What does your server do when it’s overloaded?
“Connection refused” is a fast failure, the caller’s
thread is released right away

A slow response ties up the caller’s thread, makes
the user wait

It uses capacity on caller and receiver

If the caller times out, then the work was wasted

Slow response is worse than no response

Slow Responses

Look at the latency:
TCP connection refused comes back in ~10 ms
TCP packets not acknowledged, sender
retransmits for 1 – 10 min

Causes of slow responses:
Too much load on system
Transient network saturation
Firewall overloaded
Protocol with retries built in (NFS, DNS)
Chatty remote protocols

Remember This

Slow responses trigger cascading failures
For websites, slow responses invite more
traffic as the users pound “reload”
Don’t send a slow response; fail fast
Hunt for memory leaks or resource contention

SLA Inversion
Surviving by luck alone.

Frammitz

99.99%

Corporate MTA

99.999%

SpamCannon's

DNS

98.5%

SpamCannon's

Applications

99%

Corporate DNS

99.9%

Inventory

99.9%

Message

Broker

99%

Partner 1's

Application

No SLA

Partner 1's

DNS

99%

Message

Queues

99.99%

Pricing and

Promotions

No SLA

What SLA can Frammitz really guarantee?
Do your web servers have

to ask DNS to find the
application server’s IP

address?

Absent other protections,
the best SLA you can
offer is the worst SLA

provided by your
dependencies.

The dreaded SPOF is a
special case of SLA

Inversion.

Remember This

Don’t make empty promises. Be sure you can
deliver the SLA you commit to.
Examine every dependency. Verify that they can
deliver on their promises.
Decouple your SLAs from your dependencies’.
Measure availability by feature, not by server.
Be wary of “enterprise” services such as DNS,
SMTP, and LDAP.

Unbounded Result Sets

Development and testing is done with small data sets
Test databases get reloaded frequently
Queries that perform acceptably in development and
test bonk badly with production data volume.

Bad access patterns can make them very slow

Too many results can use up all your server’s RAM or take
too long to process

You never know when somebody else will mess with your
data

Limited resources, unlimited data volume

Unbounded Result Sets:
Databases

SQL queries have no inherent limits
ORM tools are bad about this
It starts as a degenerating performance problem, but
can tip the system over.
For example:

Application server using database table to pass message between servers.

Normal volume 10 – 20 events at a time.

Time-based trigger on every user generated 10,000,000+ events at midnight.

Each server trying to receive all events at startup.

Out of memory errors at startup.

Unbounded Result Sets: SOA

Often found in chatty remote protocols, together
with the N+1 query problem
Causes problems on the client and the server

On server: constructing results, marshalling XML

On client: parsing XML, iterating over results.

This is a breakdown in handshaking. The client
knows how much it can handle, not the server.

Remember This

Test with realistic data volumes
Scrubbed production data is the best.

Generated data also works.

Don’t rely on the data producers. Their
behavior can change overnight.
Put limits in your application-level protocols:

WS, RMI, DCOM, XML-RPC, etc.

Questions?

43

Michael Nygard
michael@michaelnygard.com

