Sync: why, what, and how

Agenda

* Why Sync?
— Great taste, less filling

* Harder than it looks
— Problems and Approaches

* Microsoft Sync Framework
— What we do, what we don’t
— How to use us

Why Sync?

L Service }

\
i) Rich
£ Thin Client } Client 4@

Why Sync?

Facilitates rich clients
— Faster response, richer UX

Facilitates better availability
— Sync results in replication that translates to better availability

Facilitates improved network utilization
— Offline clients generally transmit a lot less

Facilitates lower COGS on server/cloud
— Significantly reduced READ loads and relative fewer CUD loads

Why Sync?

Service

Sync! Sync!

@ Client App <—>n¢ Client App

Sync is hard not easy

=
i

Warning: professional driver on a closed course

Always use protective eyewear
Adult supervision required

High-level schematics

Enumerate

- changes
Hello. My name is Alice

Here are my changes

Apply
Changes

Enumerating changes

What'’s Since
new? when?

* Needs a reliable watermark

— To avoid over- and under-enumeration

 Needs to support stores that don’t have one

— Including legacy stores

* Needs to be efficient in large stores

— Friendly to indexing

Granularity of Changes

—~/ | changed Lev’s address | changed Lev’s phone

Problems:
* Tracking at item level:

— Too many conflicts
— Too much data sent

* Tracking below item level:
— Too much metadata
— Lack of consistency

Change (non-)Reflection

Hey, those

Here are my changes are mine!

Here are my changes

With a simple timestamp,

* |f you grab timestamp before sync:
— change reflection
— thus inefficiency and false conflicts

* |f you grab timestamp after sync:
— missing changes or
— locked stores

Conflicts

Conflict!

Problems:
* Not detecting loses data
e Detecting “requires” histories?

No loops? Not sure!

w
I

No one sync solution has loops, but taken together, they do!

No loops? Not sure!

Cloud Service
#1

Cloud Service
H2

Syncing two devices to two services forms a loop!

Business Logic

| created foo.doc | created foo.doc

* Synchronizing below app logic:
— lgnores application semantics
— Breaks apps in subtle and fragile ways

* Dealing with duplicate creates

— Can lead to undesirable duplicates
— Can lead to divergence

Hierarchy

Create bar.txt in Foo

Bar.txt

——

Baz.txt

Create folder Foo

Problems:

Sending changes out of order

Leads to inability to apply without retries

Sending changes in hierarchy order

Leads to difficulties in handling interruptions

Complex conflict scenarios

E.g. “Alice deletes Foo”, “Bob creates Bar in Foo”
Lead to data loss, bad user experience

Item Filtering

I’d like tomorrow’s appointments
Here they are

Now, I'd like everything

Problems:
e Recording filters in sync watermark is difficult

* Desired filter can change over time
— Need to send unchanged items

* Items move in and out of the filter
— Sometimes without changes to the item itself, e.g.: “next two weeks of calendar”

* Replicas “forget” their own changes as they move out of filter
— Then need to get them back from others

“Column” Filtering

| only understand 10 properties of Contact
Here are your truncated Contacts

I’'ve made some changes

Merge!

Problems:
* Not resending things that were already sent

* Properly detecting conflicts
— Where one of the endpoints hasn’t seen whole item

* Fidelity loss
— E.g. pictures being down-scaled, or music being transcoded

Non-sync-enabled stores

Enumerate changes since 2pm

Umm...
Pass?

» Stores often can’t store sync metadata

* Can lead to fake conflicts (change reflection)

* Stores often can’t enumerate changes
* (Can lead to inability to sync
* C(Can lead to really bad on-the-wire performance

Errors and interruptions

Here are my changes Y

Now,
where
was I?

Problems:

* Watermark must describe errors
— Otherwise: over-enumeration, etc
— And do so without getting unreasonably large

e Sender never quite sure if receiver got it
— Acknowledgements not reliable
— Re-sending often unsafe

Deferred conflicts

conflict

Here are my changes: X=foo’

Closed.

Waiting for
human

Problems:

* Not all conflicts can be resolved automatically
— Doing so can lose data

* Waiting for a human to resolve them
— Locks devices and prevents progress

* Yetleaving them unresolved can lead to
— Non-convergence or data loss
— Sending the same data over and over
— Having to resolve the same conflict many times

Loss of tombstones

| don’t
remember
anymore

« Tombstones need to be cleaned up

— Otherwise unbounded meta-data growth

* Arrival of old replicas can cause
— Undead items (non-convergence) or
— Loss of data (re-init) or
— ltems coming back to life or
— Lots of fake conflicts

MICROSOFT SYNC FRAMEWORK

What does
Microsoft Sync Framework do?

Makes it easy for you to sync participating endpoints
-
Mesh sVIES

Comes with built-in endpoints:

— V1: File System, Relational Databases
— V2:SQL Data Services, Live Mesh, ADO.NET DS, and more

Provides integrated tools and user experiences
— Sync Services for ADO.NET

Makes it easy for your endpoint to participate

yncable |
Store

The Sync Session

Where Synchronization Happens

Sync Application

Sync Orchestrator

changes ;;;;;;;\\\\Ss

Sync . Meta-data Sync

Provider ' Interpretation Provider
Tools

ERIIVELS
Japinoid

Sync

: R~
Runtime /b
changes

—>

Sync Framework Runtime

Metadata to:
— Address (most of) aforementioned problems
— Yet be concise (knowledge, versions)

Runtime to:
— Implement algorithms for aforementioned problems
— Yet be store-, protocol- and type-independent

Metadata Store to:
— House metadata for those who can’t do it themselves

Simple Provider Framework to:
— Make writing providers easy, offering perf&—>complexity tradeoffs

Using Microsoft Sync Framework
What do customers do?

* Write Sync Applications to synchronize stores
— Using built-in, other people’s or your own providers

* Write Providers for your stores and apps
— Using the Framework’s Sync Runtime
— Choose your balance of performance vs. complexity

Writing a Sync Application

SyncOrchestrator orch = new SyncOrchestrator();

orch.LocalProvider =
new FileSyncProvider(guid1, “c:\\temp\\myfolder”);

orch.RemoteProvider =
new LiveMeshProvider(guid2,
new NetworkCreditial(username, password),
“MyMeshFolder”);

orch.Synchronize();

v2 Simple Provider Framework
The easiest way to write simple providers

e Two flavors: full-enumeration and anchor-based

* Full-enumeration provider (think FAT) must:
— Enumerate all objects in the scope

— Find properties that tell objects apart
— Find properties that tell if the object changed

— Be able to Create, Delete, and Update objects

* Anchor-based providers (think NTFS) must:
— Do all of the above
— Enumerate all objects that changed since some point in the past

Provider Parts: schema

* Declare the properties identifying the objects
— E.g. “Path”, “ID”, or a combination

* Declare the properties identifying the version
— E.g. “Timestamp”, “Version”, or “Hash”

ItemMetadataSchema MetadataSchema { get

{
var fieldPath = new CustomFieldDefinition(@, typeof(string), 256);
var fieldLMT = new CustomFieldDefinition(1l, typeof(UInt64));

var identityRule = new IdentityRule(new uint[] { © });

var schema = new ItemMetadataSchema(

new CustomFieldDefinition[] { fieldPath, fieldLMT },
new IdentityRule[] { identityRule });
)

Provider Parts: enumeration

Full Enumeration:
Iterate over the entire scope, return all objects in the form of ItemFieldDictionary

IEnumerable<ItemFieldDictionary> EnumerateItems(FullEnumerationContext)

{

var items = new List<ItemFieldDictionary>();

foreach(Contact ¢ in this.contacts)
items.Add(c.ToDictionary());
return items;

Anchor-model
Enumerate all changes since your last anchor (anchor), and returning an updated anchor

IEnumerable<LocalItemChange> EnumerateChanges(
byte[] anchor,
AnchorEnumerationContext context,
out byte[] updatedAnchor)

Provider Parts: operations

void InsertItem(object itemData,
RecoverableErrorReportingContext recoverableErrorReportingContext,
out ItemFieldDictionary keyAndUpdatedVersion)

Create specified object, return identifying attributes (e.g. Path, LMT) as an ItemFieldDictionary

void UpdateItem(object itemData,
IEnumerable<SyncId> changeUnitsToUpdate,
ItemFieldDictionary keyAndExpectedVersion,
RecoverableErrorReportingContext recoverableErrorReportingContext,
out ItemFieldDictionary keyAndUpdatedVersion)

Find object by its key; ensure it hasn’t changed since expected version; update it; return new
identifying attributes (as ItemFieldDictionary)

void DeleteItem(ItemFieldDictionary keyAndExpectedVersion,
RecoverableErrorReportingContext recoverableErrorReportingContext)

Find object by its key; ensure it hasn’t changed since expected version; then delete it

PARTIAL PARTICIPANTS

Remote Sync Session

Sync
Provider

Local
Store

Sync Application

Sync Orchestrator

IVIgtarclata

Interpretation

Tools

Sync
Runtime

SOOIAISS
1SpINGId

Provider
Proxy

v

Network boundary

Provider
Stub

Vieta=data -

Interpretation
Too)s Re m Ot
Sync eStore

Runtime

SOOIAISS
1SpINGId

Partial Participants

* Sync Endpoints that:
— Store metadata (in an agreed-upon way)
— Do minimal processing on update

— Optionally, simple change enumeration

* Rest is done by the other side
— Sync Framework supports the pattern
— Provider needs to write the code

Web Service as a
Partial Participant

{ Sync Application }

'

[]

Client .
Provider \L B
- HIME” 5h ':‘ (“)
Local |
Store

Client
Service

metadata

Tethered device as a
Partial Participant O

{ Sync Application }

'

| |

Client Device
Provider \L Provider
- i WH”‘(; onl ::‘, ::
Local :
Store

Device

metadata

-

[Sync Application

|
Icu
=2 =
c S
Q4,4 T
=1 g
O . n

|

|

|

\I

|

|

|
Sync

N
y

Get/put
data

Client as a

Partial Participant

/ Web Service

Service
Provider

VIetardata
[nterpretation
Tools

SAVIALSS
HopIAGId

Sync

>

Making a Web Service into a

Partial Participant

Pick a scope of synchronization
— E.g.: Photo Album

Per scope: one piece of metadata
— No logic, pure get and set
— Can be large; usually small

Per-item: two pieces of metadata
— Item metadata: Get/Set, don’t touch
— Version metadata: Get/Set, set to null on update
— Set atomically with item operations

Change enumeration

item

item

ltem

Data

metadata

ltem

Data

metadata

version

version

Scope

Scope

Metadata

ltem

Data

item version

metadata

ltem

Data

item version

metadata

— If supported, return changes since anchor, plus anchor

— If not keeping tombstones
* Return count of items in the scope

Provider Design sketch

In Scope Metadata, store:
— Knowledge, Forgotten Knowledge

In [tem Metadata, store:
— Creation Version, Update Version

In Version Metadata store:
— Update Version

— To compute real Service Update Version
* If Version Metadata matches Item Metadata: take Item Metadata’s
* Otherwise, allocate a new one (and store it)

This is an over-simplification

Other v2 features

Filtering (column, item, forgetting)

Constraint conflicts (moving, merging)

Metadata store improvements

Improved push-model support

Overall Layering

Applications

OCS Frameworks and APlIs

Sync for ADO.NET DS More
ADO.NET offline offline?

Protocol and Store Providers

File Relational = ADO.NET DS Other
Provider Provider Provider providers

FeedSync

“Make-it-simple” Services !
Integrations

Metadata Anchor Full-Enumeration SQL Change
Store Providers Providers Tracking

Common Sync Metadata and Runtime

Change Conflict

Knowledge Versions .]
5 Enumeration Detection

3/13/09 16:06 Microsoft Confidential 41

Sync Framework Resources

Sync Developer Center
http://msdn.microsoft.com/sync

— SDK (including documentation)

— Samples (including several end-to-end)

Sync Blog
http://blogs.msdn.com/sync

— Announcements, Tips and Tricks

Me

— levn@microsoft.com

QUESTIONS?

Backup

Writing Providers

Responsibilties

Store responsibilities:
— Track changes
— Store metadata

Provider responsibility: expose store’s capabilities
— Detect local changes

— Enumerate changes when requested

— Apply changes and record metadata

Some stores have no such abilities, e.g. FAT
— No place to store metadata
— No ability to track changes

What is a provider to do?

How Provider Framework works
Under the covers: Enumeration

Sync Orchestrator
GetChangeBatch y

! Metadata is
up-to-date!

Same
hat\was it last time? é Updated
What’s mlsﬁﬂ rate New
D i
o Record delete Update metadata
Store Meta-data
Store

Enumerate all objects

Simple Sync Here’s one: Provider
Provi |d=‘foo’, LMT=5pm Framework
rovider . _

with Runtime
All done!

How Provider Framework works
Under the covers: Applying changes

Sync Orchestrator

ProcessChan atch

Bring

Get versions

. . Same
What it. last time?
What’s missing? l‘_’J"S até § Updated

metadata
Record deletegx
Meta-data

Store

New

Update metadata

metadata up- Enumetitdasd! ithjeicks foo’ Ve
n-date i LMT Was Ipm
Provider Here.\,'?:‘vgne;ca,_is bar’ Simple Sync
Metadata is Framework td="foo, tMT=5pm Provider
up-to-date! with Runtime New LMT=8pm
All done! _

Check LMT
and write

Targeted Infrastructure

e Relational Provider

— Enables applications built on relational databases to easily sync with each
other

— Integration Through ADO.Net Commands
— Builds on the OCS Functionality Delivered in Orcas

* File System Provider
— Support Simple File Systems Like FAT32/TFAT
— Handle Complex Issues Associated with Hierarchy
— Basis for SyncToy 2.0

* FeedSync Support

Summary: varying entry points

OCS Frameworks and APIs

o H H 124
| need to cache my (service) data offline F 3 & |
— Cache it in SQL-CE using ADO.NET Sync Services Protocol and Store Providers
Fealiync Fil.e ReIationaI ADO.N.ET DS m
Provider Provider Provider providers
“N o, | need to sync pa rticular stores” “Make-it-simple” Services Store Integrations
— Use Sync Providers for those stores t A W s o

— Use Orchestrator to orchestrate Common Sync Metadata and Runtime

Change Conflict

Knowledge Versions 1]
g Enumeration = Detection

“But how do | communicate my changes remotely?”
— Use FeedSync support to generate and consume feeds
— Alternatively, use an optimized protocol (and still be compatible)

“But there is no provider for this store”
— Write one easily using Simple Provider models and metadata store

“I need better performance and integration”
— Use Knowledge Services to store metadata yourself

3/13/09 16:06 Microsoft Confidential

49

