

Messaging is not just for
investment banks!

(+ web is not the only way)

Gojko Adzic
http://gojko.net

gojko@gojko.com
twitter.com/gojkoadzic

Web is now ubiquitous

... we use it to display content, to share data, for
remote procedure calls, to integrate systems...

It started like this...

And simply exploded...

But why this???

HTTP distribution/integration
 Easy to use
 Cross-platform
 Clustering and load balancing
 Almost never blocked by firewalls
 Even then works with proxying
 Stateless
 Synchronous
 Unreliable/Non transactional
 High latency

Web technologies are not for
everything...

... sometimes other stuff can save a lot of effort
http://www.flickr.com/photos/33453508@N02/

HTTP distribution/integration
 Easy to use
 Cross-platform
 Clustering and load balancing
 Almost never a security problem
 Even then works with proxying
 Stateless
 Synchronous
 Unreliable/Non transactional
 High Latency

Messaging

 Application integration pattern
 Data transformation, routing, resilience, high

performance, high throughput
 Message oriented middleware(MOM)

http://www.flickr.com/photos/wirenine/

http://www.flickr.com/photos/17675967@N02/

 http://www.flickr.com/photos/stewf/

Messaging

 Application integration pattern
 Data transformation, routing, resilience, high

performance, high throughput
 Message oriented middleware(MOM)
 Event driven processing
 Split workflows into several asynchronous parts
 Share data instead of functionallity

− But use data to invoke actions!

Not just for multi-billion enterprises

 Some really
lightweight solutions
out there

 Can even run
everything on a
single machine

 Typical web sites
can benefit from
this approach as
well

Benefits

 Better isolation
− Easier scaling
− Better performance

 Resilience
 Responsiveness
 Better resource usage

Case Study #1: E-mail after
registration/order

Case Study #1: E-mail after
registration/order

Case Study #1: E-mail after
registration/order

Case Study #1: E-mail after
registration/order

Problems

 DNS/Networking issues
 SMTP rules (external verification, spam filters)
 How do we test this?
 How do we guarantee that the message gets

through?
− What if it doesn't

 What if the DB rolls back?

An alternative approach

An alternative approach

An alternative approach

An alternative approach

An alternative approach

Why is this better?

 External system problems don't affect user
registration

 SMTP rules don't slow it down
 If e-mail sending fails, we can easily re-send

later

Key Difference:

The first part of the process succeeds
without waiting for the second

- but the second is guaranteed to
happen

Transactional guarantee

How do we test this?

 Mock queue/In memory implementation
 Process registration and look at the queue

contents
 Easily unit testable
 Focuses the test on what is really important

Publish/Subscribe (Fire & Forget)

http://www.sxc.hu/photo/1084274

Publish/Subscribe (Fire & Forget)

 When you need to talk to external systems but
don't really need to wait for them to finish

 Batch/overnight processing
 Decouple processes so that they can be

performed asynchronously
 Effectively observer over messaging
 Option to have multiple subscribers (observers)

Case study #2: Credit card
processing

Case study #2: Credit card
processing

Case study #2: Credit card
processing

Case study #2: Credit card
processing

What could possibly go wrong?

 User closes the window mid-way
 User clicks on refresh
 Web call times out
 CC channels too busy/RPC times out
 Order processing fails after authorisation

On top of that, we're wasting web/db
resources!

Alternative solution

Alternative solution

Alternative solution

Alternative solution

Alternative solution

Alternative solution

Alternative solution

Alternative solution

Alternative solution

Alternative solution

What's improved?

 Closing the window makes no difference
 Refresh makes no difference
 Web call will not time out
 We can wait for CC channels
 Web and DB resources used much better

Some ways to improve this...

 Enqueue operation result, authorise order
asynchronously (increase resilience)

 Scale to more servers
 Process cards using dedicated servers (VLAN)
 Avoid polling, send a message to the client

Some other situations where
messaging might come in handy

 Distributing work across multiple machines
 Performing a number of actions when

something happens (eg notify admin, notify
customer)

 Pushing frequent updates to clients

Tools

 ActiveMQ: http://activemq.apache.org/
 NServiceBus: http://www.nservicebus.com/
 AMQP: http://amqp.org

Bridging the Communication Gap

 learn how to improve communication
between business people and software
implementation teams

 find out how to build a shared and
consistent understanding of the domain
in your team

 learn how to apply agile acceptance
testing to produce software genuinely fit
for purpose

 discover how agile acceptance testing
affects your work whether you are a
programmer, business analyst or a
tester

 learn how to build in quality into software
projects from the start, rather than
control it later

http://www.acceptancetesting.info

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

