Improving Running
Components

Evan VVeaver
Twitter, Inc.

QCon London, 2009

Many tools:

Rails

C
Scala

Java
MySQL

Rails front-end:

rendering
cache composition
db querying

Middleware:

Memcached
Varnish (cache)

Kestrel (MQ)
comet server

Milestone |: Cache policy
Optimization plan:
|. stop working

2.share the work
3. work faster

Api

T

Page cache

Everything runs from
memory in Web 2.0.

First policy change:
vector cache

Stores arrays of tweet pkeys
VWVrite-through
99% hit rate

Second policy change:
row cache

Store records from the db
(Tweets and users)
VWVrite-through
95% hit rate

Third policy change:
fragment cache

Stores rendered version of
tweets for the API
Read-through
95% hit rate

Fourth policy change:
giving the page cache its own
cache pool

Generational keys
Low hit rate (40%)

Visibility was lacking.

Peep tool
Dumps a live memcached
heap

Cache only was living

five hours

mysgl> select round(round(logl0(3576669 - last read time) * 5, 0) / 5, 1) as log, round(avg(3576669 - last read time), -2) as freshness, count(*),

rpad("'"'

count(*) / 2000,

3328300
1623200
126200
81100
64800
34800
24200
15700
10200
6500
4100
2600
1600
1000
600

400

300

200

100

100

96739
212865
224703
158067
108034

82000

65637

49267

34398

24322

19865

14810

10108

8002
6479
4014
2297
1733
649
710
672
319

'*¥') as bar from entries group by log order by log desc;

kkkkkk%

**

kkkkkkkhk*k

khkkhkkhkhkhkkhkhkhkhhkhkhhkkhkhkhkhkhkhkhkhkhkhkkkhkhkkhkhkkhkhkkkhkkk,kkkkx*x*%
kkhhkkhkhkkhkhkhkhhkhhhkhhhkhhhkhhhkhhkhkhhkhkhhkhkhhkhhhkhhkhkhhkhkhhkhkhhkhhhkhhhkhhkhkhhkhkhhkhhhkhhhkhhkhkhhkhkhhkhkhhkhkhhkhhkhkhhkkhhkhkhhkhkhkkrdhkkrkkkr**x*%
kkhhkkhkkhkkhkhkhkhhkkhhkhkhhkhkhhkhhkhkhhkhkhhkhkhhkhkhhkhhkhkhhkhkhhkhhhkhkhhkhhkhkhhkhkhhkhkhhkhkhhkhhkhkhhkkhhkhkhhkhkhhkhhkhkhhkkhhkhkhhkhkhhkhkhkkhhkkhkhkhkhhkkkkkkkkkx**%
kkhkkkhkkhkkkhkhkhkkhhkkhhkhkkhhkhkhkkhkhkhkhhkkhhkhkkhhkhkhhkhkhhkhhkkhhkhkhhkhkhkkhkkhkkhhkkhkhkhkhhkkhkkkhkkkhkk,kkk,kkxk,k*kx**%
kkhkkkhkkhkkkhkhkhkkhhkkhhkhkkhhkhkhkkhkhkhkhhkhkhhkhkkhhkhkhkkhkhkkhhkkhkkk ki, kkxkk*x**,*%x

R R S R S R S R S S S S S S S S S

khk khkhk ik k%%

kkhkkkhkkhkkkhkkkikkik*x
kkhkkkkhkkkkkkk*x
kkhkkkkkkkk*x
*kkkkk*k*%

*kkkk*x

*k*k*k

k

hhhkhkhhkhkhhhhkhhhkhkhkhhhhhhhkhk |
* % |

page.cache moved

P

L

Timeline Cache Misses

KN

What does a timeline miss
mean’

Container union

/home rebuild reads through
your followings’ profiles

Api

bt 1

Page cache

Fragment cache

I
I— Row cache
|

Vector cache

| |

O
O
£
O
T
O
=
O
=

Milestone 2:
Message queue

A component with problems

Purpose in a web app:

Move operations out of the
synchronous request cycle

Amortize load over time

twitter statuses per second
Obama mania

/

Sun 18 = Thu 22

Inauguration, 2009

Simplest MQ ever:

Gives up constraints for scalability
No strict ordering of jobs
No shared state among servers
Just like memcached
Uses memcached protocol

First version was written in
Ruby

Ruby is “optimization-
resistant”
Mainly due to the GC

If the consumers could not
keep pace, the MQ would fill
up and crash

Ported it to Scala for this
reason

Good tooling
for the Java GC:

JConsole
Yourkit

Heap Memory Usage = } Time Range: (All -] (Perform GC

ordinanyltimes:
[atencyl=FP melavaRams]max:

N

14:55 15:00 15:05

me: 2008-10-17 15:17:30

jed: 1,888,719 kbytes
ed: 2,096,960 kbytes e

Poor tooling for the Ruby
GC:

Railsbench w/patches
BleakHouse w/patches
Valgrind/Memcheck

MBARI 1.8.6 patches

Our Railsbench GC tunings

35% speed increase

RUBY HEAP MIN SLOTS=500000
RUBY HEAP SLOTS INCREMENT=250000
RUBY HEAP SLOTS GROWTH FACTOR=|
RUBY GC MALLOC LIMIT=50000000
RUBY HEAP FREE MIN=4096

Situational decision:

Scala is a flexible language

(But libraries a bit lacking)

VVe have experienced |VM
engineers

Big rewrites fail...?

Small rewrite:
No new features added
Well-defined interface
Already went over the wire

Deployed to | MQ host

Fixed regressions

Eventually deployed to all
hosts

Milestone 3:
the memcached client

Optimizing a critical path

Fragment caehe

PEN

SecoNnd

Switched to libmemcached, a
new C Memcached client

VVe are now the biggest user
and biggest 3rd-party
contributor

Uses a SWIG Ruby binding |
started a year or so ago

Compatibility among
memecached clients is critical

Twitter is big, and runs hot

Flushing the cache would be
catastrophic

Spent endless time on
backwards compatibility

A/B tested the new client
over 3 months

MQ also benefitted

Memcached can be a generic
lightweight service protocol

We also use Thrift and
AT TP internally

So many RPCs! Sometimes
|00s of Memcached round
trips per request.

“As a2 memory device gets
larger, it tends to get slower.”

Performance hierarchy is
supposed to look like:

Network disk
Network computation
Network memory

Local computation
Local memory

At web scale, it looks more
like:

Network disk

Network computation

| ocal computation

Network memory
Local memory

End

Links:

C tools:

- Peep http://github.com/fauna/peep/

- Libmemcached http://tangent.org/552/libmemcached.html
- Valgrind http://valgrind.org/

JVM tooils:

- Kestrel http://github.com/robey/kestrel/

- Smile http://github.com/robey/smile/

- Jconsole http://openjdk.java.net/tools/svc/jconsole/
- Yourkit http://www.yourkit.com/

Ruby tools:

- BleakHouse http://github.com/fauna/bleak house/

- Railsbench Ruby patches http://github.com/skaes/railsbench/

- MBARI Ruby patches http://github.com/brentr/matzruby/tree/vl_8 6 287-mbari

General:

- Danga stack http://www.danga.com/words/2005_oscon/oscon-2005.pdf

- Seymour Cray quote http://books.google.com/books?client=safari&id=qM4Yzf8K9hwC&dq=rapid
+development&q=cray&pgis=|

- Last.fm downtime http://blog.last.fm/2008/04/18/possible-lastfm-downtime

http://github.com/fauna/peep/
http://github.com/fauna/peep/
http://tangent.org/552/libmemcached.html
http://tangent.org/552/libmemcached.html
http://valgrind.org
http://valgrind.org
http://github.com/robey/kestrel/
http://github.com/robey/kestrel/
http://github.com/robey/smile/
http://github.com/robey/smile/
http://openjdk.java.net/tools/svc/jconsole/
http://openjdk.java.net/tools/svc/jconsole/
http://www.yourkit.com
http://www.yourkit.com
http://github.com/fauna/bleak_house/
http://github.com/fauna/bleak_house/
http://github.com/skaes/railsbench/
http://github.com/skaes/railsbench/
http://github.com/brentr/matzruby/tree/v1_8_6_287-mbari
http://github.com/brentr/matzruby/tree/v1_8_6_287-mbari
http://www.danga.com/words/2005_oscon/oscon-2005.pdf
http://www.danga.com/words/2005_oscon/oscon-2005.pdf
http://books.google.com/books?client=safari&id=qM4Yzf8K9hwC&dq=rapid+development&q=cray&pgis=1
http://books.google.com/books?client=safari&id=qM4Yzf8K9hwC&dq=rapid+development&q=cray&pgis=1
http://books.google.com/books?client=safari&id=qM4Yzf8K9hwC&dq=rapid+development&q=cray&pgis=1
http://books.google.com/books?client=safari&id=qM4Yzf8K9hwC&dq=rapid+development&q=cray&pgis=1
http://blog.last.fm/2008/04/18/possible-lastfm-downtime
http://blog.last.fm/2008/04/18/possible-lastfm-downtime

twitter.com/evan
blog.evanweaver.com

cloudbur.st

http://twitter.com/evan
http://twitter.com/evan
http://twitter.com/evan
http://twitter.com/evan
http://blog.evanweaver.com
http://blog.evanweaver.com
http://cloudbur.st
http://cloudbur.st

