
V1.20090306

Pouring Data on Troubled Markets
Quantitative Portfolio Management Technology at BGI

Eoin Woods, Barclays Global Investors

www.barclaysglobal.com/careers
www.eoinwoods.info

B A R C L A Y S G L O B A L I N V E S T O R S2

Introductions

Software architect at BGI

• lead software architect for the Apex portfolio management system

• future state architecture responsibilities for Equities and Capital Markets

• lead software architect for Equity Shared Services

Software engineering for ~18 years

• Systems & architecture focus for ~12 years

Background includes system software products, consultancy and
applications

• Tuxedo, Sybase, InterTrust, bespoke capital markets work

B A R C L A Y S G L O B A L I N V E S T O R S3

Who are BGI?

Barclays Global Investors

Probably the largest fund manager you’ve never heard of
• the asset manager in the Barclays group (alongside Barclays Capital and

Barclays Wealth)

• manages $1.5t* of client assets using scientific investment management
techniques

• formed by the 1996 merger of Wells-Fargo-Nikko and BZW Asset
Management

• headquartered in San Francisco

• employs about 4000 people in San Francisco, London and Tokyo and Atlanta,
Amsterdam, Chicago, Dubai, Hong Kong, Mexico City, Munich, New York,
Paris, Singapore, Sao Paulo, Sydney.

• ~1100 of the staff work in a Technology group
(*) as of 31st December 2008

B A R C L A Y S G L O B A L I N V E S T O R S4

Agenda

Introducing Apex

The Design of the Apex System

Delving Deeper

Lessons Learned

Summary

B A R C L A Y S G L O B A L I N V E S T O R S5

The Apex Portfolio Management System

This talk will concentrate on one of BGI’s many systems: Apex

Apex is a new portfolio management system being created primarily
for the Active Equity business within the firm

A portfolio management system is a critical piece of the fund
management process, automating and supporting fund rebalancing
(what to buy and sell for each fund).

The current state is three regional systems that have grown up over
5-10 years, leading to redundancy and inconsistency across regions

The new system needs to be consistent globally and be easier/
quicker/cheaper to scale and change than the three existing systems

B A R C L A Y S G L O B A L I N V E S T O R S6

The Business Drivers

Business process scalability (manage more money with less people)

Sophistication of the user experience (don’t get in the way)

Geographical independence (run money anywhere from anywhere)

Global standardisation/efficiency (do things one way, well)

“Flexibility” (allow fund specific variation and changes to anything)

Reliability (always on, mask infra failures, deal with business failures)

Environment (interoperate flexibly)

And of course the implicit requirements of being infinitely fast,
technically scalable, secure, and delivered in zero time!

B A R C L A Y S G L O B A L I N V E S T O R S7

Some of the Technical Challenges

Sophistication of the required user experience
• Cooper LLC were engaged to create a user interface design

• the result is a powerful exception based interface that rarely blocks the user
— implicit saving, asynchronous fetching, no (little) modality

• many users come from the Unix shell and so are sophisticated users

Long Running Processes
• much of the business processing involves long running operations (minutes)

— yet standard enterprise Java patterns tend to focus on transaction processing

Lots of data from many sources
• flat files, XML files, FTP sources, databases, messages, …

• 180 tables between Apex and iDB

• ~185k rows (40MB row data) typically output per fund rebalance

B A R C L A Y S G L O B A L I N V E S T O R S8

Runtime Context

Apex

<<external>>
Investment Analytics

Systems

<<external>>
iDB

Ref Data DB

buy/sell
signals

reference
data

<<external>>
Trading Systemorders

Portfolio
Manager

configuration,
analysis,
insight,

approvals

<<external>>
CEPM

authorisations

<<external>>
Active Directory

authentications

Many data
sources hidden
behind iDB

B A R C L A Y S G L O B A L I N V E S T O R S9

Agenda

Introducing Apex

The Design of the Apex System

Delving Deeper

Lessons Learned

Summary

B A R C L A Y S G L O B A L I N V E S T O R S10

Apex’s Functional Structure

Apex Server

Client
Services

External
Services

Domain and
System

Services

DAOsInfra
Services

Apex Client

Service
Proxies

Other
Systems

Process
Flow

Subsystem

JMS Messaging

GUI /
Framework /
Look & Feel

Oracle RAC

Apex Schema

iDB Schema

Interfaces Business Logic Infrastructure

B A R C L A Y S G L O B A L I N V E S T O R S11

Apex’s Deployment Structure

Primary WebLogic Server

Administrative WebLogic
Server

Clients

Production
Oracle RAC

Cluster

BCP
 Oracle RAC

Cluster

<<replication>>

Primary Data Centre

Secondary Data Centre

<<webapp>>
Process Flow Subsystem

<<ejb3app>>
Apex Services

Secondary WebLogic Server

<<webapp>>
Process Flow Subsystem

<<ejb3app>>
Apex Services

B A R C L A Y S G L O B A L I N V E S T O R S12

Some of the Big Decisions

Java/J2EE in clustered WebLogic

RDBMS store (Oracle RAC)

Distinct “Process Flow Subsystem” (based on Flux batch engine)

Thick client with custom look-and-feel (Swing / JIDE / BGI L&F)
• look and feel is an implementation of the Cooper UI design

Separate data supply (reference data) database (iDB)
• hides the complexity of our sources from the core Apex system

Asynchronous client/server queries (“streaming data”)
• synchronous generic query request, asynchronous reply with meta-data

Regional deployment

B A R C L A Y S G L O B A L I N V E S T O R S13

Influences for the Big Decisions

Process
Scalability

Geographical
Independence

Standardization

Flexibility

Reliability

Environment

Java /J2EE / WLS Cluster

Oracle / RAC

Thick Client
w/Custom L&F

iDB Reference
Database

Asynchronous
C/S Queries

Regional
Deployment

Process Flow
Subsystem

User Experience

B A R C L A Y S G L O B A L I N V E S T O R S14

The Apex Client – Setting Parameters

B A R C L A Y S G L O B A L I N V E S T O R S15

The Apex Client – Running Process Flows

B A R C L A Y S G L O B A L I N V E S T O R S16

Apex Client – Analysing Results

(May look a little constrained … standard specification is two 24” monitors)

B A R C L A Y S G L O B A L I N V E S T O R S17

Software Development

A low ceremony version of RUP used to develop the system

• inception, elaboration, construction, transition phases with lots of iterations

• “viewpoints and perspectives” approach for architecture (unsurprisingly)

• UML for architecture and (significant) design

• continuous integration & automated testing

• a fair number of tools (MagicDraw, Jtest, Structure101, U4J, …)

Development team of 16 at peak, now 9 developers

• plus tester, management and BAs

Currently about 155 raw kloc; ~85kloc of executable code

• 55kloc in the server, 76kloc in the client, 24kloc in shared module

B A R C L A Y S G L O B A L I N V E S T O R S18

Agenda

Introducing Apex

The Design of the Apex System

Delving Deeper

Lessons Learned

Summary

B A R C L A Y S G L O B A L I N V E S T O R S19

Delving Deeper

Asynchronous Client Query Pattern

Process Flow Subsystem

Blending Different Types of Technology

B A R C L A Y S G L O B A L I N V E S T O R S20

Asynchronous Client Query Pattern

Client Code

Client Service Proxy

EJB3 StubJMS Client

ServiceInterface

Apex Client

JMS Topic

Apex Server

<<ejb3_slsb>>
Client ServiceBean

ServiceInterface

Query Async
Task

<<infra_service>>
<<pojo>>

AsyncWorkManager

<<create>>submit(queryTask)

Domain
Service(s)

• runs asynchronously on a managed thread
• calls the domain service(s) needed to process the query
• transforms the domain objects into generic RowDTOs to return(Note: this is pseudo UML!)

B A R C L A Y S G L O B A L I N V E S T O R S21

Asynchronous Client Query Pattern – Walkthrough (i)

Client calls its service proxy, passing a callback to accept results

• request contains a subject and a set of filters

• Service proxy calls the server-side service via normal EJB3 invocation

EJB service implementation checks its parameters and creates an
asynchronous task object corresponding to the request type

• the filters are passed to the task object for its use

The new asynchronous task object is passed to the Asynchronous Work
Manager for execution

The AWM runs the task object on a WLS managed thread

B A R C L A Y S G L O B A L I N V E S T O R S22

Asynchronous Client Query Pattern – Walkthrough (ii)

The task object calls the domain service(s) required

• the filters are used to construct domain service parameters (e.g. limit > 10)
or in some cases passed into the domain services to be used in HSQL

The task object translates the domain objects returned into a generic
result set for the client

• results dispatched to the client via JMS messages

• a set of meta-data headers are dispatched first to describe the result set

• the data is sent as generic “RowDto” objects, which each contain one result
row, with “Attribute” objects corresponding to the headers

• the translation is done by a generic translator using OGNL

The client service proxy receives the JMS message and calls the client
callback to deliver each result row

B A R C L A Y S G L O B A L I N V E S T O R S23

Asynchronous Client Query Pattern - OGNL

Generic translation from domain object to generic row/attribute form
achieved via Object Graph Navigation Language

http://www.opensymphony.com/ognl/

OGNL interprets an expression in the context of Java Beans, allowing
properties to be retrieved or set
• e.g. “fund.strategy.name” interpreted at run time as if calling

fund.getStrategy().getName() on the specified object

Our Attribute objects include an OGNL expression to define how their
value is derived from domain objects

Many of the asynchronous query tasks use a standard OGNL based
translator that uses the Attribute expressions and the OGNL library to
translate domain objects into a row of Attribute values

B A R C L A Y S G L O B A L I N V E S T O R S24

Process Flow Subsystem

Apex’s batch subsystem (runs “process flows” containing “jobs”)

Uses the Flux scheduler product as the core of the subsystem

• provides the generic scheduling engine

• includes an administration web interface and GUI tools for flowchart design

• pure Java library (can be used as a standalone program or embedded)

• hidden behind wrappers and abstractions but provides all of the generic
scheduling functions

Apex developers write jobs by extending (Apex) base classes that
isolate our code from Flux and standardise its use

We combine the jobs into flowcharts to orchestrate them into useful
business processes that users can request or that run on schedules

B A R C L A Y S G L O B A L I N V E S T O R S25

Process Flow Subsystem - Flux

Flux is a commercial Java-based scheduling package
• not unlike an extended Quartz

• product of the Flux Corporation (www.fluxcorp.com)

Very flexible, extensible and embeddable
• also quite complicated and needs to be used carefully

The Flux model is one of “flowcharts”, “triggers” and “actions”
• trigger – file arrival, time delay, cron-like schedule and custom triggers, …

• action – run an executable, send a message, call Java, indicate an error, …

• flowchart – a directed graph of triggers, actions and control structures

Our use so far has been simple
• manual and cron like schedule triggers, Java and error actions

B A R C L A Y S G L O B A L I N V E S T O R S26

Process Flow Subsystem – Flux Administrative Interfaces

Ops Console
webapp

Flowchart
Designer

B A R C L A Y S G L O B A L I N V E S T O R S27

Process Flow Subsystem - Design

(Note: again any similarity to UML here is illusionary!)

WLS Webapp

Flux Scheduler

ApexBaseJob

Flowchart
Definition

Flowchart State

Oracle RDBMS

Rebalance
Process Jobs

Infra
Services DAOs

Admin UI

scale out by adding
instances of this webapp

B A R C L A Y S G L O B A L I N V E S T O R S28

Blending Different Types of Technology (i)

Blend of mainstream and niche, commercial and open source

Mainstream commercial:

• Java 1.5 and 1.6, EJB3, JPA, WebLogic Server, Oracle 10.x RAC, JIDE

Niche commercial:

• Flux scheduler, CPLEX, JMSL Numerical Library, Quadbase Libraries, JEP
Parser

Mainstream open source:

• Spring, Hibernate, JavaHelp, Commons Lang/Logging/File/POI/…,

Niche open source:

• XStream, OGNL, Ostermiller Utilities, JDIC

B A R C L A Y S G L O B A L I N V E S T O R S29

Blending Different Types of Technology (ii)

Mainstream Commercial

+ usually does what it says in the documentation, adequate information
available

+ well known and understood, skills & experience readily available

- vendor interaction is usually slow, product development relatively slow

- new or obscure features can be hard to figure out

Niche Commercial

+ highly responsive, motivated vendors

+ fast moving products with lots of frequent smaller releases

- may have significantly less field testing (i.e. need to test yourself)

- information and skills may be difficult to obtain

B A R C L A Y S G L O B A L I N V E S T O R S30

Blending Different Types of Technology (iii)

Mainstream Open Source
+ generally very reliable, due to wide use

+ information and skills widely available

+ source code availability means you can do your own investigation

+/- usage often assumed to follow a pattern, which you need to follow

- integration with other products often needed and can be complicated

Niche Open Source
+ the functions are often fantastic and exactly what you need

+ often supported by a small enthusiastic group of committers

+ source code availability means a certain degree of self sufficiency

- less widely used so less testing completed and less knowledge available

- when you have a problem you may well be on your own

B A R C L A Y S G L O B A L I N V E S T O R S31

Agenda

Introducing Apex

The Design of the Apex System

Delving Deeper

Lessons Learned

Summary

B A R C L A Y S G L O B A L I N V E S T O R S32

Lessons Learned

Testing 3rd party components takes more time than you think
• assuming certain behaviours or failure modes can cost a lot of time if wrong

A separate read-only reference data database worked very well
• separates concerns, team specialisation makes development more efficient

Interactive work and bulk processing have very different profiles
• e.g. latency to the database really matters for bulk operations

• two data centres means modest latency from the secondary to the db

• for bulk operations (e.g. large JPA flush) this causes significant slowdown

Hibernate entity navigation needs to be done carefully (i.e. avoid N+1)
• naive navigation of a persistent object model results in a lot of queries

• may not notice for interactive processing; batch means 20,000+ sub-selects!

B A R C L A Y S G L O B A L I N V E S T O R S33

Lessons Learned (ii)

Each type of software brings its own challenges and strengths
• we’ve been pretty happy with the software we’ve chosen

• had to learn to deal with the foibles of each type

Investing in a domain model was time and money well spent
• a lot of business knowledge in the domain model

• well structured and normalised model means change is much easier

Monitoring is more important (and harder) than you think
• we had monitoring from day-1 but you always find you need more

OGNL based transformers can be brittle
• expressions embedded in the code can’t be type checked

• need strong unit tests or mistakes result in problems at runtime

B A R C L A Y S G L O B A L I N V E S T O R S34

Agenda

Introducing Apex

The Design of the Apex System

Delving Deeper

Lessons Learned

Summary

B A R C L A Y S G L O B A L I N V E S T O R S35

Summary

Apex is a new portfolio management system being built at BGI

In many ways a conventional J2EE system, Apex faces some unusual
challenges and meets these by using

• a very sophisticated rich Swing client with a custom look & feel

• batch processing via an embedded batch scheduler

• a generic client query mechanism using asynchronous meta-data driven
result sets

• a diverse blend of mainstream and niche, commercial and open source
technology

We learned a number of useful lessons as a result of specific
characteristics of Apex, but we think others will find them useful too

B A R C L A Y S G L O B A L I N V E S T O R S36

Acknowledgements

The Apex Team*

• Management: Dale Campbell, Phillip Sabbagh

• Requirements & Test: Ed Hwang, Alex Rush, Nick Monge

• Team Leaders: Brian Compton, Josh Outwater

• Engineers: Richard Francis-Jones, Gerard Guillemette, Mark Kamiya, Wira
Pradjinata, Roger Tanuatmadja, Rajat Tikoo

• Database Admin: Sarah Brydon

The iDB Team*

• Russ Vernick, Raja Kurapati, Prashant Mehta, Alex Black

The entire Active Equity Business who have funded and supported us

*As of March 2008 – many others have been involved over time and we gratefully acknowledge their efforts also

B A R C L A Y S G L O B A L I N V E S T O R S37

More on the Architectural Approach

Software Systems Architecture: Working
With Stakeholders Using Viewpoints and
Perspectives

Nick Rozanski & Eoin Woods
Addison Wesley, 2005

http://www.viewpoints-and-perspectives.info

Eoin Woods
Barclays Global Investors
eoin.woods@barclaysglobal.com
www.eoinwoods.info

