
Scala, Lift and
the Real Time Web

David Pollak
Benevolent Dictator for Life

Lift Web Framework

dpp@liftweb.net

All about me (David Pollak)

�Sometimes strict, mostly lazy

�Lead developer for Lift Web Framework

�Spreadsheet junky (writing more than

using)

�Writing Beginning Scala

Oh, the things I’ll cram into your brain

�Scala is a Functional/OO hybrid language

• Compiles to JVM byte-code

• Runs at native speeds

• Full Java library interoperability

�Lift is a powerful, simple Web Framework

• Best framework for building interactive web sites

• More concise than Ruby on Rails

• More type-safe than anything you’ve ever used
(except Happs)

�Scala leads to Lift

World Wide Web: In the Beginning

�Antisocial

�Person ↔Machine

• Shopping

• Banking

• CRUD

�Browser == Green Screen

Web 2.0

�More Social

�Different Flavors

• Person ↔ Machine ↔ Machine: Mashups

• Person ↔ Person: Facebook, Twitter

• Machine ↔ Machine → Person:

Microformats

�Internet becomes Postman

Real Time Web

�We are social Animals that love

instant gratification

�Real Time

• Games

• Chat

• Everything

�Next wave: Real Time Web

Punch Line

�Scala → Lift

�Lift → Real Time Web

�Real Time Web → Awesome User

Experience

Real-time Chat in Lift: Messages

�case class Messages(msgs:

List[String])

Real-time Chat in Lift: Server

� object ChatServer extends Actor with
ListenerManager {

private var msgs: List[String] = Nil

protected def createUpdate = Messages(msgs)

override def highPriority = {
case s: String if s.length > 0 =>

msgs ::= s
updateListeners()

}
this.start

}

Real-time Chat in Lift: Comet

� class Chat extends CometActor with CometListenee {
private var msgs: List[String] = Nil

def render =
<div>

{msgs.reverse.map(m => {m})}
{ajaxText("", s => {ChatServer ! s; Noop})}

</div>

protected def registerWith = ChatServer

override def highPriority = {
case Messages(m) => msgs = m ; reRender(false)

}
}

Singletons

�object ChatServer extends Actor

with ListenerManager

�ChatServer is a singleton

�One instance per JVM

�Can be passed as parameter… it’s an

instance

�Composition of Actor and ListenerManager

Case classes

�case class Foo(bar: String,

baz: List[Foo])

�For Free:

• bar and baz properties (immutable by default)

• toString , hashCode , and equals

• Pattern matching with parameter extraction

�20 lines of boilerplate reduced to 1 line

Pattern Matching

� case Messages(m) => msgs = m

case s: String if s.length > 0 =>

msgs ::= s

� Match against case classes

• Extract parameters

• Test against parameters: case Person(name, 35) =>

• Great for message/event handling

� Type-safe casting

� Awesome declarative way of expressing logic

Traits and Composition

� class Chat extends CometActor with
CometListenee

�Traits are interfaces plus data and logic

�Composition
• object sally extends Person(“Sally”) with

Female with Runner

• def womansRun(who: Female with Runner) ->
womansRun(sally)

�Benefits of multiple inheritance w/o

diamond problem

Immutable Data Types

�var msgs: List[String] = Nil

<div>Hello</div>

�Immutability your long-time friend: String

• Never have to say synchronized

• Never have to make a copy “just in case”

• Great for hash keys

�Leads to transformational thinking

�Better for garbage collector

Function passing

� msgs.reverse.map(m => {m})

ajaxText("",

s => {ChatServer ! s; Noop})

� map takes a function as a parameter

• Transforms String to Elem

• Applied to each String in msgs

• The function is strongly typed: m is a String

� Functions are instances and can be passed

� Functions can be put in Maps for later use

XML Literals and Support

� {msgs.reverse.map(m =>

{m})}

�XML first-class in Scala, like Strings in Java

�Library-level XPath-style operators

• xml \ "li" – find all the child tags

• for {p <- x \\ "p"; ca <- p \ "@class"

c <- ca.text.split(" ")} yield c

Find all the classes used by <p> tags

�Immutable, like Strings

Actor Library

�Real Time means events

�Threadless, stackless event handlers

�With very nice syntax (Erlangish)

Feeling RESTful

� case Req(ApiPath :: "statuses" ::

"public_timeline" :: Nil,

this.method, GetRequest) => publicTimeline

def publicTimeline(): Box[TwitterResponse] = {

val statusList =

Message.findAll(OrderBy(Message.id,

Descending),

MaxRows(20)).

map(msgData _)

Full(Right(Map("statuses" ->

("status", statusList))))

}

Conclusion

� Scala’s object model is a superset of Java’s

� Scala’s traits: super-powerful class composition

� Scala is more type-safe than Java

� Scala is syntactically simpler than Java or Ruby

� Scala is as concise as Ruby

� Scala has awesome libraries including Actors

� What if Java, Ruby, and Haskell has a love-child?

� Scala’s design led to Lift’s design

� Lift’s design makes the Real Time Web super-simple

Questions

