
JavaScript in the Enterprise
Attila Szegedi, Chief Software Architect

Adeptra Inc.

Programming language
choice is an implementation
detail.

Why use JavaScript at all?

Diminished by lack of tooling

Not necessarily a benefit if the operational rollout is
heavyweight.

Rapid development

JavaScript provides a very minimal environment

You get to tailor it to your organization’s needs

First-class functions and dynamic access to them
prevent undesired access to broader APIs.

I.e. no stray Thread.sleep() calls possible!

Sandboxing improves security

Easy to implement domain specific APIs

Tailored environment

Wide hiring pool for people with JavaScript skills.

They’re used to HTML DOM and browser APIs
though.

Still less of a transition than switching from Java.

People aspect

Use an interpreted dynamic language for scalability?

Scalability

Hundreds of thousands of tasks executing
concurrently.

Most of the time, they’re blocked waiting for something

human action

web service response

time window

Not an issue with client side JS

Scalability problem

One thread per task

State machines (messaging middleware falls under this)

Continuation-passing style

Stack-based continuations

Architectural solutions

Right solution at the right granularity

High system level

Coarser granularity

Ideally, around a message passing middleware

State machines

Viable in closure-friendly languages

JavaScript qualifies as one

Java doesn’t qualify

the amount of visual noise is staggering!

Fact that execution is suspended still appears in API

Developers need to be aware of it

Continuation-passing style

My personal favorite (on right system level)

Suspension of execution, transfer to a different
processing node, etc. completely hidden from API

Not standard in JavaScript, though

Mozilla Rhino on JVM supports them

Stack-based continuations

Example with a state
machine
 ...
 httpRequestToMyCompanyId = doHttpRequest("http://www.mycompany.com", "GET",
 headers);
 return;
}

function onHttpResponse(event) {
 if(event.requestId == httpRequestToMyCompanyId) {
 if(event.statusCode == 200) {

 }
 }
}

http://www.mycompany.com
http://www.mycompany.com

Example with CPS

 ...
 doHttpRequest("http://www.mycompany.com", "GET", headers,
 new function(response) {
 if(response.statusCode == 200) {
 ...
 }
 });

Much better, as there’s no longer need
for explicit correlation.

http://www.mycompany.com
http://www.mycompany.com

Example with stack
continuations

 ...
 var response = doHttpRequest("http://www.mycompany.com", "GET", headers);
 if(response.statusCode == 200) {
 ...
 }

As if you were writing vanilla procedural
code. Also, can use try-catch exception
handling for IO failures.

http://www.mycompany.com
http://www.mycompany.com

Example with Narrative JS
function f(n) {
 return doHttpRequest->("http://www.mycompany.com", "GET", headers);
}

Needs separate NJS->JS compilation
and a small runtime library.

function f(n){var njf1=njen(this,arguments,"n");nj:while(1){switch(njf1.cp){case
0:njf1.pc(1,null,
doHttpRequest,["http://www.mycompany.com","GET",headers]);case
1:with(njf1)if((rv1=f.apply(c,a))==NJSUS){return fh;}return njf1.rv1;break nj;}}}

http://www.mycompany.com
http://www.mycompany.com
http://www.mycompany.com
http://www.mycompany.com

Example with Narrative JS

You still need to use an explicit “yield”
operator.

Continuations benefits

Scalable code

Easy to write code

Deal breaker for us

Demo

Organizational aspects

Hiring pool

Separate engineering teams for different levels of
system

You don’t need language separation for this, but

“tailored environment” encourages it.

Also, higher level code then has fewer assumptions
about runtime environment.

Less rosy organizational
aspects

Keeping high code
quality is a challenge.

“Everything public and
global” disease.

Your developers mus
understand JS runtime

Fortunately there’s a
cure.

Lexical scoping for hiding

(function() {
 ...
})();

Lexical scoping for hiding
(function() {
 this.foo = function() {
 bar();
 };

 function bar() {
 print("bar invoked");
 }
})();

js> foo();
bar invoked
js> bar();
js: "<stdin>", line 16: uncaught JavaScript runtime exception: ReferenceError:
"bar" is not defined.
	 at <stdin>:16

Namespacing
/** @namespace */
var MYMODULE = {};

(function() {
 MYMODULE.foo = function() {
 bar();
 };

 function bar() {
 print("bar invoked");
 }
})();

Private fields in a
constructor
function User(name, age) {
 var year = (new Date()).getFullYear() - age;
 this.getYearBorn = function() {
 return year;
 }
 this.name = name;
}

js> var bob = new User("Bob", 27);
js> bob.getYearBorn();
1982
js> bob.year;
js> bob.name;
Bob

Adopt JSDoc
/**
 * @constructor
 * @param name {string} name of the user being created
 * @param age {number} age of the user being created
 * @return a new User object
 */
function User(name, age) {
 var year = (new Date()).getFullYear() - age;
 this.getYearBorn = function() {
 return year;
 }
 this.name = name;
}

Why am I telling you this?

You’ll have a big body of code in JavaScript

You will want to have it maintainable

Horror code 1: dead stores

var map = new java.util.HashMap();
map = someFunctionThatReturnsMap();

Uses a Java class

Creates a map that is immediately thrown away

Compensating for lack of type declarations?

Horror code 2: terminology
mismatch
var fareType;
switch(trip.fareType) {
 case "O": {
 fareType = "oneWay";
 break;
 }
 case "D": {
 fareType = "dayReturn";
 break;
 }
 case "M": {
 fareType = "monthReturn";
 break;
 }
 default: {
 fareType = "unknown";
 }
}

Horror code 2: terminology
mismatch

var ft = fare.fareType;
var fareType =
 ft == "O" ? "oneWay" :
 ft == "D" ? "dayReturn" :
 ft == "M" ? "monthReturn" :
 "unknown";

var fareType = {
 O: "oneWay",
 D: "dayReturn",
 M: "monthReturn"
}[fare.fareType] || "unknown";

Horror code 3: fallback to
Java

if(x.toString().equals(“”) ...

if(x == “”)

var list = new java.util.ArrayList();
list.add(x);
list.add(y);
list.get(1)

var list = [];
list.push(x);
list.push(y);
list[1]

Code quality

Test-driven methodology helps.

Drives architecture toward smaller, independent units

Code reviews for revealing working but smelly code.

Documentation

Unit testing as part of build

Static analysis as part of build

JSLint, Fortify, Yasca, …

Modularity

You need to create a script loading mechanism

Proprietary “include()” function is sufficient

include("com/mycompany/workflow/event.js");

But watch out for standardization efforts

Eclipse OSGi-like module system for JS at
http://wiki.eclipse.org/E4/JavaScript

http://wiki.eclipse.org/E4/JavaScript
http://wiki.eclipse.org/E4/JavaScript

Include in Rhino

ScriptableObject.defineClass(topScope, EngineApi.class);
MyHostObject hostObject = (MyHostObject)cx.newObject(topScope,
 “MyHostObject”);
ScriptableObject.putProperty(topScope, "hostObject", hostObject);

public class MyHostObject extends ScriptableObject {

 private final ScriptStorage scriptStorage;

 public String getClassName() {
 return "MyHostObject";
 }

 public void jsFunction_include(Scriptable scope, String scriptName) {
 Context cx = Context.getCurrentContext();
 Script script = scriptStorage.getScript(scriptName, cx);
 script.exec(cx, scope);
 }
}

Quick’n’dirty config system

var voice="John";
var language="English";
include(“config.js");

voice="Emma";

config.js:

Can use complex JSON-like config entries

Be aware it allows for arbitrary code execution.

Threading

JavaScript has no standard threading notion

Programs are single-threaded by default

You’re best off if you can fit your processing into this
model

batch processing

single-threaded event handlers

Shared objects

Service-level objects

RESTful caches (i.e. NetKernel)

No need to parse that XSLT file 1M times a day

Named objects (i.e. through JNDI)

Services (i.e. async HTTP initiator)

Stateless, or at least immutable by scripts

Shared standard objects

String Number MyHostObject foo bar

String Number MyHostObject foo bar

String Number MyHostObject foo bar

Shared standard objects

String Number MyHostObject

foo bar

foo bar

foo barNeed to prevent modification of
shared objects.

Subtly changes runtime semantics

Precompilation

Same script expected to be executed many times

Prepare it into as efficient runtime representation as
possible on first use

Script script = scripts.get(name);
if(script == null) {
 URL url = getScriptUrl(name);
 Reader r = new InputStreamReader(url.openStream(), "utf-8");
 try {
 script = cx.compileReader(r, url.toExternalForm());
 }
 finally {
 r.close();
 }
 scripts.put(name, script);
}
script.exec(cx, topScope);

Other enterprise uses

Expression language for advanced users

Logic spanning multiple HTTP requests (“web flow”)

Expression language

Don’t write your own language

JavaScript can still provide daunting to a manager
writing an occasional Excel function

Expression language
function countList(list, condition) {
 return reduceLeft(filter(list, condition), 0, function(x) { return ++x });
}

function filter(list, condition) {
 var newList = [];
 for(var i in list) {
 var e = list[i];
 if(condition(e)) {
 newList.push(e);
 }
 }
 return newList;
}

countList(cars, function(x) { return x.year > 2006 && x.price < 10000 }) > 0

Expression language

countList(cars, year > 2006 and price < 10000) > 0

Any manager who ever used Excel formulas can work
with this.

Drawback: it isn’t JavaScript though - not yet.

Expression language

countList(cars,) > 0year > 2006 && price < 10000

Expression language
function countList(list, condition) {
 return reduceLeft(filter(list, condition), 0, function(x)
{ return ++x });
}
countList.isLastArgumentFunction=true;

countList(cars,) > 0function(x) { return
 x.year > 2006 &&
 x.price < 10000 }

Some transformation required, but still...

... much less effort than writing your own expression
language.

Expression language

year 2006

<

price 10000

<

&&

Expression language

year

2006

<

price

10000

<

&&

function x

return

x

.

x

.

Is it worth it?

You need to write a pre-parser to replace “and” and
“or”

You need to write a post-parser AST editor to:

prohibit looping constructs etc.

allow lifting of expressions into functions

You can write your public functions in JS

You still needn’t write a full parser/evaluator

Web flow

Lots of web flow solutions are implemented as state
machines, i.e. Spring Web Flow.

They also often use XML as their state-machine
definition language.

Web flow
 <view-state id="enterBookingDetails">
 <transition on="submit" to="reviewBooking" />
 </view-state>

 <view-state id="reviewBooking">
 <transition on="addGuest" to="addGuest" />
 <transition on="confirm" to="bookingConfirmed" />
 <transition on="revise" to="enterBookingDetails" />
 <transition on="cancel" to="bookingCancelled" />
 </view-state>

 <subflow-state id="addGuest" subflow="createGuest">
 <transition on="guestCreated" to="reviewBooking">
 <evaluate expression="booking.guests.add(currentEvent.attributes.guest)" />
 </transition>
 <transition on="creationCancelled" to="reviewBooking" />
 </subfow-state>
	 	
 <end-state id="bookingConfirmed" >
 <output name="bookingId" value="booking.id" />
 </end-state>

 <end-state id="bookingCancelled" />

Web flow in JavaScript

var addresses = {};
addresses.shippingAddress = getAddress("index", {});
addresses.billingAddress = getAddress("billingAddress", addresses.shippingAddress);
respondAndWait("confirm", addresses);
respond("thankyou");

Rhino-in-Spring:

Web flow in JS

“Subflows” come naturally - they are functions
(subroutines)

Logic is expressed as any other application logic

Control flow structures we know and love

Conclusion

JavaScript has very good expressiveness, access
controls, security, and tailoring capabilities

Continuations for ultimate scalability

Both in backend and in webapps

Easy to hire for

Need to pay attention to code quality control

Thank you!

