
3/12/2009

1

What is F#?

Microsoft Multi-paradigm Language

CLR – All the .NET platform benefits

First class language in to Visual Studio 2010

What about F# makes it functional or concurrent?

Immutable Constructs

Higher Order Functions

Partial Application

Ability to do lazy evaluation

Asynchronous Workflows

3/12/2009

2

Real World Application!

Auto Insurance Rating Engine

3/12/2009

3

3/12/2009

4

List of
Policies

Policy

Calculation

Policy

Calculation

Driver
Factor

Coverage Coverage Coverage

Vehicle

Driver Driver

Vehicle

Driver Driver

Company
Car Factor

Multi-policy
Factor

Zipcode
Factor

Policy

Calculation

Why can’t it be faster?

3/12/2009

5

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let rec Rate (policies: System.Collections.Generic.List<Policy>) =

let policies = List.of_seq policies

let rec exec = function

|[] -> ()

|p::tail -> async{

calcCoverages(p, GetCurrentRates(p), GetCoverages(p))

} |> Async.Spawn

exec tail

exec policies

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

6

let Rate (policies: System.Collections.Generic.List<Policy>) =

let policies = List.of_seq policies

let rec exec = function

|[] -> ()

|p::tail -> async{

calcCoverages(p, GetCurrentRates(p), GetCoverages(p))

} |> Async.Spawn

exec tail

exec policies

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let rec Rate (policies: System.Collections.Generic.List<Policy>) =

let policies = List.of_seq policies

let rec exec = function

|[] -> ()

|p::tail -> async{

calcCoverages(p, GetCurrentRates(p), GetCoverages(p))

} |> Async.Spawn

exec tail

exec policies

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

7

let rec Rate (policies: System.Collections.Generic.List<Policy>) =

let policies = List.of_seq policies

let rec exec = function

|[] -> ()

|p::tail -> async{

calcCoverages(p, GetCurrentRates(p), GetCoverages(p))

} |> Async.Spawn

exec tail

exec policies

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let rec Rate (policies: System.Collections.Generic.List<Policy>) =

let policies = List.of_seq policies

let rec exec = function

|[] -> ()

|p::tail -> async{

calcCoverages(p, GetCurrentRates(p), GetCoverages(p))

} |> Async.Spawn

exec tail

exec policies

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

8

let rec calcCoverages (policy:Policy) rates coverages = function

| [] -> ()

| c::tail -> updatePolicy(policy (Async.Run(GetRates policy rates c)))

calcCoverages policy rates tail

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let rec calcCoverages (policy:Policy) rates coverages = function

| [] -> ()

| c::tail -> updatePolicy(policy (Async.Run(GetRates policy rates c)))

calcCoverages policy rates tail

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

9

let GetRates (policy:Policy) rates coverage =

async{

let! results = Async.Parallel[

for v in Policy.vehicles ->

async{return (Result policy v coverage rates).Force()}

]

return (coverage, Seq.reduce(+) results)}

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let GetRates (policy:Policy) rates coverage =

async{

let! results = Async.Parallel[

for v in Policy.vehicles ->

async{return (Result policy v coverage rates).Force()}

]

return (coverage, Seq.reduce(+) results)}

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

10

let GetRates (policy:Policy) rates coverage =

async{

let! results = Async.Parallel[

for v in Policy.vehicles ->

async{return (Result policy v coverage rates).Force()}

]

return (coverage, Seq.reduce(+) results)}

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let GetRates (policy:Policy) rates coverage =

async{

let! results = Async.Parallel[

for v in Policy.vehicles ->

async{return (Result policy v coverage rates).Force()}

]

return (coverage, Seq.reduce(+) results)}

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

11

let GetRates (policy:Policy) rates coverage =

async{

let! results = Async.Parallel[

for v in Policy.vehicles ->

async{return (Result policy v coverage rates).Force()}

]

return (coverage, Seq.reduce(+) results)}

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let GetRates (policy:Policy) rates coverage =

async{

let! results = Async.Parallel[

for v in Policy.vehicles ->

async{return (Result policy v coverage rates).Force()}

]

return (coverage, Seq.reduce(+) results)}

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

12

let Result (p:Policy)(v:Vehicle)(c:AutoCoverage)(r:CurrentRates) =

lazy(

let QueryRate(rq:RateQuery) =

rq.Coverage <- c.ToInt()

r.GetRate(rq)
.
.
.

BasicPolicyFactor()

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let Result (p:Policy)(v:Vehicle)(c:AutoCoverage)(r:CurrentRates) =

lazy(

let QueryRate(rq:RateQuery) =

rq.Coverage <- c.ToInt()

r.GetRate(rq)
.
.
.

BasicPolicyFactor()

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

13

let Result (p:Policy)(v:Vehicle)(c:AutoCoverage)(r:CurrentRates) =

lazy(

let QueryRate(rq:RateQuery) =

rq.Coverage <- c.ToInt()

r.GetRate(rq)
.
.
.

BasicPolicyFactor()

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let Result (p:Policy)(v:Vehicle)(c:AutoCoverage)(r:CurrentRates) =

lazy(

let QueryRate(rq:RateQuery) =

rq.Coverage <- c.ToInt()

r.GetRate(rq)
.
.
.

BasicPolicyFactor()

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

14

let Result (p:Policy)(v:Vehicle)(c:AutoCoverage)(r:CurrentRates) =

lazy(

let QueryRate(rq:RateQuery) =

rq.Coverage <- c.ToInt()

r.GetRate(rq)
.
.
.

BasicPolicyFactor()

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let Result (p:Policy)(v:Vehicle)(c:AutoCoverage)(r:CurrentRates) =

lazy(

let QueryRate(rq:RateQuery) =

rq.Coverage <- c.ToInt()

r.GetRate(rq)
.
.
.

BasicPolicyFactor()

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

15

let BasicPolicyFactor() =

lazy(

Seq.map force [AverageDriverFactor();

MultiPolicyCombinationDiscount();

CompanyCarDiscount();]

|> Seq.reduce (*)

)

(Lazy<decimal>)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let BasicPolicyFactor() =

lazy(

Seq.map force [AverageDriverFactor();

MultiPolicyCombinationDiscount();

CompanyCarDiscount();]

|> Seq.reduce (*)

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

16

let BasicPolicyFactor() =

lazy(

Seq.map force [AverageDriverFactor();

MultiPolicyCombinationDiscount();

CompanyCarDiscount();]

|> Seq.reduce (*)

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let AverageDriverFactor() =

lazy(

let mutable accum = (decimal)0

for d in p.Drivers do

accum <- accum + (DriverFactor d).Force()

accum / (decimal)p.Drivers.Count)

(unit -> Lazy<decimal>)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

17

let AverageDriverFactor() =

lazy(

let mutable accum = (decimal)0

for d in p.Drivers do

accum <- accum + (DriverFactor d).Force()

accum / (decimal)p.Drivers.Count)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let AverageDriverFactor() =

lazy(

let mutable accum = (decimal)0

for d in p.Drivers do

accum <- accum + (DriverFactor d).Force()

accum / (decimal)p.Drivers.Count)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

18

let DriverFactor d =

lazy(

[BaseRate d;

DriverClassFactor d;

InsuranceScoreFactor d;

GoodStudentFactor d;

GrangeLifeFactor d;

AwayAtSchoolFactor d]

|> Seq.map force

|> Seq.reduce (*)

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let DriverFactor d =

lazy(

[BaseRate d;

DriverClassFactor d;

InsuranceScoreFactor d;

GoodStudentFactor d;

GrangeLifeFactor d;

AwayAtSchoolFactor d]

|> Seq.map force

|> Seq.reduce (*)

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

19

let DriverFactor d =

lazy(

[BaseRate d;

DriverClassFactor d;

InsuranceScoreFactor d;

GoodStudentFactor d;

GrangeLifeFactor d;

AwayAtSchoolFactor d]

|> Seq.map force

|> Seq.reduce (*)

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let InsuranceScoreFactor (d:Driver) =

let rq = new RateQuery(RateTableType.CreditScoreFactor)

rq.Age <- Common.CalculateDriverAge(d.BirthDate, p)

let rec scoreCalc() =

match d.InsuranceScoreAttribute.ToString() with

| "CBRN" when score < 2 -> -2

| "CBRS" when score < 2 -> -3

| "CBRW" when score < 2 -> -4

| "CBRV" when score < 2 -> -5

| "CBRX" when score < 2 -> -6

| _ -> d.InsuranceScore

rq.CreditScore <- scoreCalc()

QueryRate rq

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

20

let InsuranceScoreFactor (d:Driver) =

let rq = new RateQuery(RateTableType.CreditScoreFactor)

rq.Age <- Common.CalculateDriverAge(d.BirthDate, p)

let rec scoreCalc() =

match d.InsuranceScoreAttribute.ToString() with

| "CBRN" when score < 2 -> -2

| "CBRS" when score < 2 -> -3

| "CBRW" when score < 2 -> -4

| "CBRV" when score < 2 -> -5

| "CBRX" when score < 2 -> -6

| _ -> d.InsuranceScore

rq.CreditScore <- scoreCalc()

QueryRate rq

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let InsuranceScoreFactor (d:Driver) =

let rq = new RateQuery(RateTableType.CreditScoreFactor)

rq.Age <- Common.CalculateDriverAge(d.BirthDate, p)

let rec scoreCalc() =

match d.InsuranceScoreAttribute.ToString() with

| "CBRN" when score < 2 -> -2

| "CBRS" when score < 2 -> -3

| "CBRW" when score < 2 -> -4

| "CBRV" when score < 2 -> -5

| "CBRX" when score < 2 -> -6

| _ -> d.InsuranceScore

rq.CreditScore <- scoreCalc()

QueryRate rq

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

21

let InsuranceScoreFactor (d:Driver) =

let rq = new RateQuery(RateTableType.CreditScoreFactor)

rq.Age <- Common.CalculateDriverAge(d.BirthDate, p)

let rec scoreCalc() =

match d.InsuranceScoreAttribute.ToString() with

| "CBRN" when score < 2 -> -2

| "CBRS" when score < 2 -> -3

| "CBRW" when score < 2 -> -4

| "CBRV" when score < 2 -> -5

| "CBRX" when score < 2 -> -6

| _ -> d.InsuranceScore

rq.CreditScore <- scoreCalc()

QueryRate rq

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let InsuranceScoreFactor (d:Driver) =

let rq = new RateQuery(RateTableType.CreditScoreFactor)

rq.Age <- Common.CalculateDriverAge(d.BirthDate, p)

let rec scoreCalc() =

match d.InsuranceScoreAttribute.ToString() with

| "CBRN" when score < 2 -> -2

| "CBRS" when score < 2 -> -3

| "CBRW" when score < 2 -> -4

| "CBRV" when score < 2 -> -5

| "CBRX" when score < 2 -> -6

| _ -> d.InsuranceScore

rq.CreditScore <- scoreCalc()

QueryRate rq

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

22

let DriverFactor d =

lazy(

[BaseRate d;

DriverClassFactor d;

InsuranceScoreFactor d;

GoodStudentFactor d;

GrangeLifeFactor d;

AwayAtSchoolFactor d]

|> Seq.map force

|> Seq.reduce (*)

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let DriverFactor d =

lazy(

[BaseRate d;

DriverClassFactor d;

InsuranceScoreFactor d;

GoodStudentFactor d;

GrangeLifeFactor d;

AwayAtSchoolFactor d]

|> Seq.map force

|> Seq.reduce (*)

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

23

let DriverFactor d =

lazy(

[BaseRate d;

DriverClassFactor d;

InsuranceScoreFactor d;

GoodStudentFactor d;

GrangeLifeFactor d;

AwayAtSchoolFactor d]

|> Seq.map force

|> Seq.reduce (*)

)

let force (x:Lazy<x>) = x.Force()

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let DriverFactor d =

lazy(

[BaseRate d;

DriverClassFactor d;

InsuranceScoreFactor d;

GoodStudentFactor d;

GrangeLifeFactor d;

AwayAtSchoolFactor d]

|> Seq.map force

|> Seq.reduce (*)

)

decimal list

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

24

let DriverFactor d =

lazy(

[BaseRate d;

DriverClassFactor d;

InsuranceScoreFactor d;

GoodStudentFactor d;

GrangeLifeFactor d;

AwayAtSchoolFactor d]

|> Seq.map force

|> Seq.reduce (*)

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let DriverFactor d =

lazy(

[BaseRate d;

DriverClassFactor d;

InsuranceScoreFactor d;

GoodStudentFactor d;

GrangeLifeFactor d;

AwayAtSchoolFactor d]

|> Seq.map force

|> Seq.reduce (*)

)

decimal

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

25

let AverageDriverFactor() =

lazy(

let mutable accum = (decimal)0

for d in p.Drivers do

accum <- accum + (DriverFactor d).Force()

accum / (decimal)p.Drivers.Count

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let AverageDriverFactor() =

lazy(

let mutable accum = (decimal)0

for d in p.Drivers do

accum <- accum + (DriverFactor d).Force()

accum / (decimal)p.Drivers.Count

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

26

let BasicPolicyFactor() =

lazy(

Seq.map force [AverageDriverFactor();

MultiPolicyCombinationDiscount();

CompanyCarDiscount();]

|> Seq.reduce (*)

)

(unit -> Lazy<decimal>)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let Result (p:Policy)(v:Vehicle)(c:AutoCoverage)(r:CurrentRates) =

lazy(

let QueryRate(rq:RateQuery) =

rq.Coverage <- c.ToInt()

r.GetRate(rq)
.
.
.

BasicPolicyFactor()

)

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

27

let GetRates (policy:Policy) rates coverage =

async{

let! results = Async.Parallel[

for v in Policy.vehicles ->

async{return (Result policy v coverage rates).Force()}

]

return (coverage, Seq.reduce(+) results)}

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

let CalcCoverages (policy:Policy) rates coverages = function

| [] -> ()

| c::tail -> updatePolicy(policy, (Async.Run(GetRates policy rates c)))

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

28

let rec Rate (policies: System.Collections.Generic.List<Policy>) =

let policies = List.of_seq policies

let rec exec = function

|[] -> ()

|p::tail -> async{

calcCoverages(p, GetCurrentRates(p), GetCoverages(p))

} |> Async.Spawn

exec tail

exec policies

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic
Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-
policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

(d1 + d2) / 2

Parallel

Parallel

Spawned Thread

Process List of
Policies

Policy Policy

Coverage Coverage Coverage

Vehicle Vehicle

Basic Policy
Factor

Avg Driver
Factor

Driver

Driver
Factor

Driver
Factor

Driver

Company
Car Factor

Multi-policy
Factor

Zipcode
Factor

Policy

Coverage Coverage

3/12/2009

29

1 5 10 20 40 50

C# 3 10 15 38 78 95

F# 1 4 7 15 20 35

#light

let RealWorld F# = Concurrent applications

Amanda Laucher

Amanda.Laucher@SophicGroup.net

pandamonial.com

Twitter: pandamonial

mailto:Amanda.Laucher@SophicGroup.net

