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What is F#?

Microsoft Multi-paradigm Language

CLR – All the .NET platform benefits

First class language in to Visual Studio 2010

What about F# makes it functional or concurrent?

Immutable Constructs

Higher Order Functions

Partial Application

Ability to do lazy evaluation

Asynchronous Workflows
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Real World Application! 

Auto Insurance Rating Engine
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let rec Rate (policies: System.Collections.Generic.List<Policy>) =

let policies = List.of_seq policies

let rec exec = function

|[] -> ()

|p::tail -> async{

calcCoverages(p, GetCurrentRates(p), GetCoverages(p))

} |> Async.Spawn

exec tail

exec policies
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let rec calcCoverages (policy:Policy) rates coverages = function

| [] -> ()

| c::tail -> updatePolicy(policy (Async.Run(GetRates policy rates c)))

calcCoverages policy rates tail
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let GetRates (policy:Policy) rates coverage = 

async{

let! results = Async.Parallel[

for v in Policy.vehicles ->

async{return (Result policy v coverage rates).Force()}

]

return (coverage, Seq.reduce(+) results)}
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let Result (p:Policy)(v:Vehicle)(c:AutoCoverage)(r:CurrentRates) =

lazy(

let QueryRate(rq:RateQuery) = 
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let BasicPolicyFactor() = 

lazy(

Seq.map force [AverageDriverFactor();

MultiPolicyCombinationDiscount();

CompanyCarDiscount();]

|> Seq.reduce (*)

)

(Lazy<decimal>)
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let BasicPolicyFactor() = 
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let AverageDriverFactor() =

lazy(

let mutable accum = (decimal)0

for d in p.Drivers do

accum <- accum + (DriverFactor d).Force()

accum / (decimal)p.Drivers.Count)

(unit -> Lazy<decimal>)
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let InsuranceScoreFactor (d:Driver) =

let rq = new RateQuery(RateTableType.CreditScoreFactor)

rq.Age <- Common.CalculateDriverAge(d.BirthDate, p)

let rec scoreCalc() =

match d.InsuranceScoreAttribute.ToString() with

| "CBRN" when score < 2 -> -2

| "CBRS" when score < 2 -> -3

| "CBRW" when score < 2 -> -4

| "CBRV" when score < 2 -> -5

| "CBRX" when score < 2 -> -6

| _ -> d.InsuranceScore

rq.CreditScore <- scoreCalc()

QueryRate rq
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let DriverFactor d = 

lazy(

[BaseRate d;

DriverClassFactor d;

InsuranceScoreFactor d;

GoodStudentFactor d;

GrangeLifeFactor d;

AwayAtSchoolFactor d]

|> Seq.map force

|> Seq.reduce (*)

)
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let DriverFactor d = 
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lazy(

[BaseRate d;

DriverClassFactor d;
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|> Seq.map force
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let AverageDriverFactor() =

lazy(

let mutable accum = (decimal)0

for d in p.Drivers do

accum <- accum + (DriverFactor d).Force()

accum / (decimal)p.Drivers.Count

)

(d1 + d2) / 2
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let AverageDriverFactor() =

lazy(

let mutable accum = (decimal)0

for d in p.Drivers do

accum <- accum + (DriverFactor d).Force()

accum / (decimal)p.Drivers.Count

)
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let BasicPolicyFactor() = 

lazy(

Seq.map force [AverageDriverFactor();

MultiPolicyCombinationDiscount();

CompanyCarDiscount();]

|> Seq.reduce (*)

)

(unit -> Lazy<decimal>)
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let Result (p:Policy)(v:Vehicle)(c:AutoCoverage)(r:CurrentRates) =

lazy(

let QueryRate(rq:RateQuery) = 

rq.Coverage <- c.ToInt()

r.GetRate(rq)  
.
.
.

BasicPolicyFactor()

)
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let GetRates (policy:Policy) rates coverage = 

async{

let! results = Async.Parallel[

for v in Policy.vehicles ->

async{return (Result policy v coverage rates).Force()}

]

return (coverage, Seq.reduce(+) results)}
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let CalcCoverages (policy:Policy) rates coverages = function

| [] -> ()

| c::tail -> updatePolicy(policy, (Async.Run(GetRates policy rates c)))
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let rec Rate (policies: System.Collections.Generic.List<Policy>) =

let policies = List.of_seq policies

let rec exec = function

|[] -> ()

|p::tail -> async{

calcCoverages(p, GetCurrentRates(p), GetCoverages(p))

} |> Async.Spawn

exec tail

exec policies
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1 5 10 20 40 50

C# 3 10 15 38 78 95

F# 1 4 7 15 20 35

#light

let RealWorld F# = Concurrent applications
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