
BLENDING JAVA WITH
DYNAMIC LANGUAGES

speaker.identity {
 name 'Venkat Subramaniam'
 company 'Agile Developer, Inc.'
 credentials 'Programmer', 'Author', 'Trainer'
 blog 'http://agiledeveloper.com/blog'
 email 'venkats@agiledeveloper.com'
}

Abstract
The last several years have brought us some exciting advances in
the capability and strength of the Java platform. At the same
time, developers are increasingly excited about the productivity
gains promised by the use of dynamic languages. The good news
is that it is possible to get the best of both worlds—to take
advantage of dynamic languages and leverage your knowledge of
and investments in the Java Platform at the same time!

In this presentation we will take an in-depth look at mixing
dynamic languages and Java in the same application. We'll first
look at it from the perspective of full interaction, and explore
some idiomatic differences in interaction. Then, from an
application development perspective, we'll discuss how these
can help in areas like Rules Engine, DSLs, and Meta
Programming.

2

Java: The Language and the Platform

Java started out as a powerful, yet simple language

Through it we realized WORA—Write Once Run Anywhere

‘C’ like language with Automatic Garbage Collection

Powerful set of API and libraries

Strong community of passionate developers and innovators

Now we realize, the real strength of Java is not in the language

It’s in the platform

3

Dynamic Languages

Dynamic Languages have been around for a long time

Facilitate ease of metaprogramming, building DSLs, ... leading
to higher productivity

There is renewed interest in this area

Why?

Machines have gotten faster

More Availability—community based development

Awareness of test driven development

Excitement from killer apps
4

Java Languages
Java was once this single language on multiple platforms

.NET was multiple languages on a single platform

Now Java has become a true multiple languages on multiple
platforms

5

Java

JRuby
Groovy JavaScript

Jython

Jaskell

Java Bytecode

Multi–Language Means What?

Compiling from higher level languages to bytecode is not new

But, multi–language means full interoperability with
constructs created in different languages

Can you inherit from a class created in another language?

Can you associate or aggregate classes created in another
language?

Can you intermix them without major restrictions?

6

Why Mix Dynamic Languages?

Dynamic Languages bring power of Metaprogramming and
DSL to the table

Can improve your productivity

You can allow your users to be more expressive

You can use it for Rule Specification in Rule Engines

You can let your program evolve

You can take dynamic decisions based on certain input or
application state

7

API for Interoperability
Languages to Java API/JDK

Language specific facilities—different languages handle this
differently

For example, here are options in Groovy

8

Java to other languages

JSR–223 is a standard API for language interoperability

Useful to call from Java into other languages

Source: “Programming Groovy: Dynamic Productivity for the Java Developer”

JavaScript to Java
You can use Java API/JDK from within JavaScript

9

Idiomatic Difference

One of the real fun in mixing languages is enjoying the
idiomatic differences

It is about calling Java API but using syntactic sugar and
facilities of dynamic languages

Reduces code size, gives you productivity

10

Building Swing App using JavaScript

11

Building Swing App using Groovy

12

Calling JavaScript from Java

Java allows you to call into scripts using JSR–223

ScriptEngineManager allows you to query for and fetch
ScriptEngines

Once you obtain a ScriptEngine, use eval to execute any script

13

Calling JavaScript from Java...

14

package com.agiledeveloper;

import javax.script.*;

public class Script
{

 public static void main(String[] args)

 {

 try

 {

 ScriptEngineManager scriptManager = new ScriptEngineManager();

 ScriptEngine engine = scriptManager.getEngineByName("groovy");

 engine.eval("println 'Hello from Groovy'");

 }

 catch(ScriptException ex)

 {

 System.out.println("Error in scripting: " + ex);

 }

Invocable Interface
Allows you to invoke functions and methods

15

package com.agiledeveloper;
import javax.script.*;

public class Script {

 public static void main(String[] args) {

 try {

 ScriptEngineManager scriptManager = new ScriptEngineManager();

 ScriptEngine engine = scriptManager.getEngineByName("groovy");

 engine.eval(
 "def count(val) { for (i in 1..val) { println i }; return 'Thank you for calling' }");

 Invocable invocable = (Invocable) engine;

 Object result = invocable.invokeFunction("count", 5);

 System.out.println("Result from invocation is " + result);

 }

 catch(Exception ex) ...

Compilable Interface

If you’re going to make repeated calls to an interface you can
ask it to be pre-compiled

Provides more efficiency

16

Groovy Simplifies this

To call into Groovy from Java you don’t have to use JSR–223
unless you want to use script as is (without compilation)

Groovy provides joint compilation

You can compile Groovy code into Java bytecode and use it
like any other Java code

17

Using Groovy with Java

18

A Small DSL Sample

19

A Small DSL Sample

20

References

http://groovy.codehaus.org

https://scripting.dev.java.net/

“Programming Groovy: Dynamic Productivity for the
Java Developer,” by Venkat Subramaniam, Pragmatic
Bookshelf, 2008.

21

You can download examples and slides from
http://www.agiledeveloper.com - download

Thank You!
Please fill in your session evaluations

22

You can download examples and slides from
http://www.agiledeveloper.com - download

