
REST, Reuse, and
Serendipity

Steve Vinoski
Member of Technical Staff

Verivue
Westford, MA USA
QCon London 2008

serendipity (noun): the
occurrence and development
of events by chance in a
happy or beneficial way.

Motivation

• Many folks in the web world already
understand the capabilities and power of REST

• if this describes you, this talk may bore you

• But to many involved in enterprise integration
and middleware, REST is entirely new and
misunderstood

• this talk is for you

Enterprise Integration

Some Solutions

• Descendants of Remote Procedure Call (RPC)

• CORBA, EJB, .NET, SCA

• SOAP, WSDL, WS-*

• Enterprise messaging

• Messaging queuing

• Enterprise Application Integration (EAI)

Problems with MQ

• Generally proprietary, except for:

• JMS: open messaging interfaces

• AMQP: open messaging protocol (and
open source Apache implementation)

• Can be expensive

Problems with EAI

• EAI systems are typically:

• proprietary and expensive

• centralized hubs

• costly to customize and maintain

• Some ESBs have fallen into this category

• old EAI products re-labeled

Problems with RPC
Approaches

• Focus on language first

• tries to fit the distributed system to the
language, not vice-versa

• Tries to make distributed calls appear local

• ignores partial failure and latency issues

• Exposes language-specific objects directly
as language-independent services

More RPC Problems

• Code generation

• traditionally, stub code generated from a
definition language, e.g. IDL or WSDL

• today WSDL is often reverse-generated
from annotated language definitions

• Both approaches can create deceptively
significant consumer-service coupling

Type System Illusions

• RPC-oriented systems offer the illusion of
type safety

• define interface types

• define data types to pass via methods

• But there is no type safety across the wire

• This type specialization is costly for
scalability and reuse

Interfaces are Protocols

• In RPC-oriented systems, a new service
interface is a new application protocol

• consumers hard-code knowledge of
method names and semantics

• consumers must inherently know which
method to call, possibly in what order

• no semantic constraints on methods

Data Specialization

• RPC-oriented systems encourage
specialized data definitions

• same as defining regular classes/methods

• Using XML is better than using IDL types
or programming language types

• but benefits disappear if you generate
code from it

Integration Problem
Summary

• Proprietary approaches too expensive

• Standard approaches focus on
implementation languages, not distributed
systems issues

• New interface == new application protocol

• Ad hoc data formats coupled to interfaces

• All these problems inhibit reuse

A Detour: UNIX Reuse

• Consider the UNIX shell pipe

• chain output of one tool to input of
another

• old tools and new can interact, even
though independently developed

• easily combine existing tools into new
ones

UNIX Pipes

• The pipe is based on two key features

• the uniform interface of the “file-like object”

• the standard file descriptor framework for
applications: stdin, stdout, stderr

• Standard ways to get data to/from applications

• The pipe results from modularity and simplicity
(and serendipity, perhaps?)

REST’s Uniform
Interface Constraint

• Generalized resource interface

• in HTTP, methods are the protocol verbs

Method Purpose Idempotent?

GET Retrieve resource state
representation

Yes
(no side effects)

PUT Provide resource state
representation Yes

POST Create or extend a
resource No

DELETE Delete a resource Yes

Uniform Interface
Benefits

• Enables visibility into interactions

• including caching, monitoring, mediation
applicable across all resources

• Provides strong implementation hiding,
independent evolvability

• Simplified overall architecture

Generic Invocation

• The uniform interface makes reusable generic
invocation libraries possible

• python urllib, urllib2, httplib, httplib2

• curl command-line tool

• many others, in many languages

• Server-side dispatching simplified as well

• No need for generated code

Four Sub-Constraints

• Resource identification via URIs

• Resource manipulation through the
exchange of resource state representations

• Self-describing messages with potentially
multiple representation formats

• Hypermedia as the engine of application
state (HATEOAS, or hypermedia constraint)

Representations

• Method payloads are representations of
resource state

• Methods often support multiple
representation formats

• Representation format is not method-
specific as with RPC-oriented approaches

Media Types

• Representation formats identified using
media (MIME) types

• These types are standardized/registered
through the IANA (http://www.iana.org/
assignments/media-types/)

• Allows reusable libraries and tools to
handle various MIME types

http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/
http://www.iana.org/assignments/media-types/

Hypermedia Constraint

• Resources keep resource state, clients keep
application state

• Resources provide URIs in their state to
guide clients through the application state

• Clients need “know” only a single URI to
enter an application, can get other needed
URIs from resource representations

Separation of Concerns

• RPC-oriented systems conflate methods and
data

• Many ad hoc methods and data types, but
just a single data format on the wire

• REST separates methods and data formats

• Fixed set of methods, many standardized
data formats, multiple formats possible per
method

Enhancing Reuse
Possibilities

• Separating concerns

• libraries/tools for dealing with methods

• separate libs/tools for dealing with data

• Uniformity

• libraries for caching

• libraries for interception and mediation

For Example
• Consider a bug-tracking system

• HTML representations for interactive viewing,
additions, modifications

• Excel or CSV representations for statistical tracking
by importing into other tools

• XML (e.g. AtomPub) or JSON to allow use by other
tools, for extensions and integration

• Atom feeds for watching bug activity

• Existing clients that understand these formats can easily
adapt to use them

Independence

• Each of the resources and formats on the
previous page could be added
independently without disturbing existing
resource and formats

• You might add them “just because,” without
an immediate need

• plant the seeds to see what grows

Summary

• RPC-oriented systems try to extend programming
language paradigms over the wire

• encourages variation, which can’t scale

• REST is purpose-built for distributed systems

• properly separates concerns and allows
constrained variability only where required

• encourages combinations of orthogonal
solutions into larger applications

Engineer for serendipity.

Roy T. Fielding

For More Information
• Fielding’s thesis

• http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

• Read various blogs: Mark Baker, Bill de hÓra, Joe Gregorio, Paul
Downey, Benjamin Carlyle, Stu Charlton, Mark Nottingham

• Sign up to the rest-discuss Yahoo mailing list

• My “Toward Integration” columns in IEEE Internet Computing (all
columns are available from http://steve.vinoski.net/), for example:

• Serendipitous Reuse (Jan/Feb 2008)

• Demystifying RESTful Data Coupling (Mar/Apr 2008)

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.markbaker.ca/blog/
http://www.markbaker.ca/blog/
http://www.dehora.net/journal/
http://www.dehora.net/journal/
http://bitworking.org/news/
http://bitworking.org/news/
http://blog.whatfettle.com/
http://blog.whatfettle.com/
http://blog.whatfettle.com/
http://blog.whatfettle.com/
http://soundadvice.id.au/blog/
http://soundadvice.id.au/blog/
http://www.stucharlton.com/blog/
http://www.stucharlton.com/blog/
http://www.mnot.net/blog/
http://www.mnot.net/blog/
http://steve.vinoski.net
http://steve.vinoski.net

