
Using REST to aid WS-*
Building a RESTful SOA RegistryBuilding a RESTful SOA Registry

Paul Fremantle, CTO, WSO2

paul@wso2.com

Paul Fremantle

� Co-founder and CTO, WSO2

�Open source SOA middleware

� Chair, Apache Synapse PMC

� Co-Chair, OASIS WSRX TC� Co-Chair, OASIS WSRX TC

� Previously STSM at IBM Hursley Lab

� IBM WebServices Gateway, WSIF, JSR110, etc

Contents

� Understanding SOA and Metadata

� Requirements for an SOA Registry

� Resources and REST design

� Applying this to SOA Metadata� Applying this to SOA Metadata

� Atom Publishing Protocol

� REST design issues

� How does this apply to WS-*

� “Governance” – what is it, what does it
mean?

The oldest SOA picture of all

Registry/
Repository

PUBLISHLOOKUP

Service
Consumer

Service
Provider

PUBLISH

INTERACT

LOOKUP

One strong REST view

Registry/
Repository

PUBLISHLOOKUP

Service
Consumer

Service
Provider

PUBLISH

Discover and
INTERACT

Media-types

LOOKUP

One problem with UDDI

Registry/
Repository

SOAPSOAP

Service
Consumer

Service
Provider

SOAP

SOAP

SOAP

The Reality of SOA

Email
Word docs
?wsdl
SVN
etc

Service
Consumer

Service
Provider

SOAP, JMS, REST

XML/HTTP, etc, etc

Our view

Registry/
Repository

WebUI
REST

REST
WebUI

Service
Consumer

Service
Provider

REST

SOAP, JMS, REST

XML/HTTP, etc, etc

WebUI

Where did UDDI come from?

� Publish, categorize and search Web Service
definitions

� Designed with “homogenous” thinking
� Assumed that everyone will work to the same set of
interfaces

� Based on strict criteria, systems will automatically
find service instances that offer a given interface

� Fundamentally based on the same model as
Windows Registry
� Long UUIDs - tModels

� Lots of interlinking

This is a valid set of requirements

SOA Developers can publish WSDLs
and WS-Policies and search for
service definitions

The system shows dependencies The system shows dependencies
between services, schemas and other
dependent artifacts

But only a small part of the requirements

SOA Developers can publish WSDLs and
WS-Policies and search for service
definitions

The system shows dependencies
between services, schemas and other
dependent artifacts

Registry characteristics/requirements

SOA Developers can publish WSDLs and
WS-Policies and search for service
definitions

The system shows dependencies
between services, schemas and other
dependent artifacts

Business users feel happy to create and
document ‘domains’

Developers can comment on what works
and doesn’t, best practice, hints and tips

Using my favourite blog reader I can
subscribe to comments on my services

Using simple APIs, content handlers can
be written to perform dependency
analysis, extract useful data and validate
against policies.

Simple metadata properties allow the
lifecycle of services to be managed.

Standard APIs allow systems to publish
and consume metadata without
understanding complex standards

Every change is versioned and I can
rollback at any point to a previous
revision

Security controls allow me to configure
exactly who can read, write, delete and
manage authorization for each resource

The system can be run in a highly-
available load-balanced cluster

REST design

� Everything is a Resource, identified by a URI

� Everything has a Uniform Interface (PUT, POST,

GET, DELETE)

� The representation you get is based on

Content-TypeContent-Type

� e.g. text/xml, image/jpeg

� Interactions are stateless

� Links are key

� “Hypermedia as the engine of application state”

(HATEOAS)

REST design (continued)

� Ideally the “site” and the “api” are the same
� Based on Accept headers each client gets the
representation they like

� In reality very few sites work like this
� Many sites are not stateless – use sessions

� But not so good for APIs

� Navigational context is easy for people to figure
out
� No simple technical description of HATEOAS

How to apply this to SOA metadata?

Building an SOA Registry with REST

Registry/

Web
Browser

HTML / HTTP

Feeds
Atom

Registry/
Repository

Registry
Java API

curl / wget

Other
Languages

APP

APP

APP

Registry Java API

WSO2 Registry

An open source project that has tried to

think about human and community issues

as it tackles Enterprise SOA

� http://wso2.org/projects/registry

� Apache 2.0 license

� Open mailing list, wiki, JIRA, etc

Simple Atom Feed
<?xml version ="1.0" encoding ="utf-8" ?>
<feed xmlns ="http://www.w3.org/2005/Atom" >

<title >Registry Blog </ title >
<link href ="http://pzf.fremantle.org/registry/blog/" />
<updated >2008-02-07T15:15:02Z </ updated >
<author >

<name>Paul Fremantle </ name>
</ author >
<id >blog-6003063374827736283.post-

4039376056255567566 </ id >4039376056255567566 </ id >
<entry >

<title >Social Enterprise </ title >
<link href ="http://pzf.fremantle.org/registry/blog/2" />
<id >blog-687987243798723.post-342798273498734 </ id >
<updated >2008-02-07T15:15:02Z </ updated >
<content >

<html>…</html>
</ content >

</ entry >
</ feed >

The benefit of Atom

� You can “subscribe” with your Atom Feed

Reader to ANYTHING in the Registry

�When new versions of this service are

deployed

When people comment on my service�When people comment on my service

�When new services tagged “finance” are

deployed

Atom and AtomPub

� Standard “feed” reading and writing
capability

� AtomPub (Atom Publishing Protocol)
�RFC 5023

� Service (1..1)

�Workspace (1..n)

�Collection (1..n)

�Entries / Media Entries (1..n)

More on AtomPub

� Clear definition of behaviour of
� POST, GET, PUT, DELETE

� For example, when you POST a resource to a collection
� Specify a “Slug” header that defines the proposed name

� The response 201 Created + Location header of new URI

� Benefits� Benefits
� A well-defined protocol

� With interoperability, multiple clients, tools

� But also accessible with curl, wget, etc

� Does exactly what we needed (almost)

� Issues
� There is some ambiguity about how to create a new collection

� No definition of queries

AtomPub isn’t just for Atom

� The AtomPub team defined clearly how
you can create collections of Atom
entries

� But also they define what happens if you
POST other “stuff”POST other “stuff”
�Other stuff == “Media Resources”

� Well defined behaviour when you post a
Media Resource
�Creates an Atom Entry with the metadata

�Plus a link to the real resource

HATEOAS

� Atom has well defined link model

� An example:
<?xml version='1.0' encoding='UTF-8'?>

<feed xmlns="http://www.w3.org/2005/Atom" xmlns:ns="tag:wso2.org,2008:foo">

<parentPath xmlns="http://wso2.org/registry">/</parentPath>

<link href="http://localhost:8000/wso2registry/atom/stuff" />

<link href="http://localhost:8000/wso2registry/atom/stuff" rel="self" /><link href="http://localhost:8000/wso2registry/atom/stuff" rel="self" />

<entry>

<link href="http://localhost:8000/wso2registry/atom/stuff/flatpackmediator.jar"
/>

<title type="text">/stuff/flatpackmediator.jar</title>

<updated>2008-03-13T11:19:39.512Z</updated>

<link href="http://localhost:8000/wso2registry/atom/stuff/flatpackmediator.jar"
rel="self" />

<link href="/stuff/flatpackmediator.jar" rel="path" />

</entry>

</feed>

How we defined our URLs

� Base URL
� http://server/wso2registry/

� “Intermediate” paths
� base/web

� base/atom� base/atom

� base/resource

� Examples:
� http://localhost:8080/wso2registry/web/services/finance/invoice.wsdl

� http://localhost:8080/wso2registry/atom/services/finance/invoice.wsdl

� http://localhost:8080/wso2registry/resource/services/finance/invoice.wsdl

� Three different views of the same resource
� Note we didn’t use the Accept model

How we defined our URL scheme

� /tags
�Collection of all tags in the system

� /tags/[mytag]
�Collection of all resources tagged mytag

/resource/r1;tags� /resource/r1;tags
�Collection of tags on resource r1

� /resource/r1;comments
�Collection of comments on r1

� etc

Versions

� Every time a resource is updated we

create a new version

� We keep track of dependencies between

resources (e.g. WSDL <- Schema)resources (e.g. WSDL <- Schema)

� Access versions

�/resource/r1?v=4

�/resource/r1;version

� Collection of pointers to versions

Creating Collections
(or why Microsoft didn’t use AtomPub – until they did)

� Not defined in AtomPub

� Spec says:
�This specification does not specify any
request semantics or server behavior in the request semantics or server behavior in the
case where the POSTed media type is
"application/atom+xml" but the body is
something other than an Atom Entry. In
particular, what happens on POSTing an
Atom Feed Document to a Collection using
the "application/atom+xml" media type is
undefined.

Creating a collection by APP
POST /wso2registry/atom/ HTTP/1.1

Slug: stuff

Host: localhost:8000

Content-Type: application/atom+xml;type=entry

<entry xmlns="http://www.w3.org/2005/Atom"
xmlns:ns="tag:wso2.org,2008:foo">

<summary type="text" /><summary type="text" />

<author>

<name>admin</name>

</author>

<ns:properties />

<mediaType xmlns="http://wso2.org/registry" />

<parentPath xmlns="http://wso2.org/registry" />

<directory xmlns="http://wso2.org/registry">true</directory>

</entry>

Queries

� Still work in progress

�We want our backend to be flexible, but we

haven’t yet created our own Query Language

� Our current solution:

�Store the backend specific query (e.g. SQL)

as an entry in the Registry

�Execute the query with parameters passed as

HTTP GET parameters

Full definition

http://wso2.org/wiki/display/registry/Registry+Protocol

Java API

Registry reg = new RemoteRegistry(new

URL("http://localhost:8000/wso2registry/atom"), "admin",
"admin");

Resource resource =
reg.get("/services/finance/invoice.wsdl");reg.get("/services/finance/invoice.wsdl");

Object wsdl = resource.getContent();

Resource newCollection = new Resource();

newCollection.setDirectory(true);

newCollection.setAuthorUserName("admin");

reg.put("/stuff", newCollection);

What about WS-*?

� Focus on
storing, searching, managing

WSDL, Schema, WS-Policy

� Issues
� Dependency links � Dependency links

� WSDL imports Schema and Policy

� Validity - is this WSDL valid? is it WS-I compliant?

� Does it meet my corporate guidelines?

� What stage of its lifecycle?
� Test, System Test, Production, Deprecation

� WS-* metadata isn’t enough for the real world
� Comments, Tags, Properties and Ratings add some simple
real-life annotations that augment this

Content Handlers

� Whenever you POST or GET a WSDL we can
intercept and run stuff

� For example, when we import WSDL
� Also import the Schemas

� Create internal dependency mapping � Create internal dependency mapping
� WSDL dependsUpon Schema

� Schema isDependedUponBy WSDL

� We are extending this to run WS-I validation

� We also support URL handlers
� Allow you to extend the REST model of the Registry

Lifecycle handling

� Version 1.0

�Properties

� Version 1.1

�Better specification

�Configure your lifecycle phases

�Run handlers when lifecycle changes occur

So, what do I think about REST?

� Be skeptical about REST
� Even in this – the most obvious possible scenario –
there are too many design choices to be made

� Even after you subset to Atom/AtomPub there are
still lots of non-standard design choices to be made

� Still needed very smart people� Still needed very smart people

� But this has worked out very well
� In terms of building the Human Interaction and
Social aspects

� Unification of the human interface with the machine
interface

� Atom feeds

Human design

� By defining the structure and permissions this

registry is designed to operate at any scale

� Local on your hard drive for personal versioned

storage

� Departmental or shared between colleagues� Departmental or shared between colleagues

� Enterprise wide

� Internet scale

� Running middleware systems directly from this

metadata can offer the same scaling

� http://mooshup.com example

Get involved!

� Home page

�http://wso2.org/projects/registry/

� Mailing List

�registry-dev@wso2.org�registry-dev@wso2.org

� SVN
� https://wso2.org/svn/browse/wso2/trunk/registry/

� Issue tracker

�https://wso2.org/jira/browse/REGISTRY

Questions

