
Clustered Architecture Patterns:
Delivering Scalability and Availability

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Delivering Scalability and Availability Qcon London, 2008

Ari Zilka – Terracotta CTO
and Founder

Agenda

� Patterns from Years of Tier-Based Computing

� Network Attached Memory / JVM-level clustering

� Applying NAM To Eliminate the DB

� Use Case #1: Hibernate

Confidential – for information of designated recipient only. Copyright Terracotta 2006

� Use Case #1: Hibernate

� Use Case #2: Service Orientation

� Lessons Learned

The State Monster

� At Walmart.com we started like everyone else: stateless + load-balanced
+ Oracle (24 cpus, 24GB)

� Grew up through distributed caching + partitioning + write behind

� We realized that “ilities” conflict
– Scalability: avoid bottlenecks

Confidential – for information of designated recipient only. Copyright Terracotta 2006

– Availability: write to disk (and I/O bottleneck)
– Simplicity: No copy-on-read / copy-on-write semantics (relentless tuning, bug fixing)

� And yet we needed a stateless runtime for safe operation
– Start / stop any node regardless of workload
– Cluster-wide reboot needed to be quick; could not wait for caches to warm

� The “ilities” clearly get affected by architecture direction and the stateless
model leads us down a precarious path

The Precarious Path: Our tools lead us astray

� Stateless load-balanced architecture ⇒ bottleneck on DB

� In-memory session replication ⇒ bottleneck on CPU, Memory

� Clustered DB cache ⇒ bottleneck on Memory, DB

� Memcache ⇒ bottleneck on server

Confidential – for information of designated recipient only. Copyright Terracotta 2006

� Memcache ⇒ bottleneck on server

� JMS-based replicated cache ⇒ bottleneck on network

� …Pushing the problem between our app tier CPU and the data
tier I/O

CRUD Pules Up…

� Types of clustering:
– Load-balanced (non-partitioned) Scale Out
– Partitioned Scale Out

� Both Trade-off Scalability or availability (usually by hand) in
different ways

Confidential – for information of designated recipient only. Copyright Terracotta 2006

� …and everything we do forces the trade-offs

scalability

availability

Changing the Assumptions: JVM-level Clustering

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Performance + Reliability

� 10X throughput over conventional APIs
– All Reads from Cache (implicit locality)
– All Writes are Deltas-only
– Write in log-forward fashion (no disk seek time)
– Statistics and Heuristics (greedy locks)

� Scale out the Terracotta Server

Confidential – for information of designated recipient only. Copyright Terracotta 2006

� Scale out the Terracotta Server
– Simple form of Active / active available today
– V1.0 GA this year

HelloClusteredWorld (from our pending Apress book)

� Chapter 3: Definitive Guide to Terracotta

public class HelloClusteredWorld {
private static final String message = "Hello Clustered World!";
private static final int length = message.length();

private static char[] buffer = new char [length];
private static int loopCounter;

Confidential – for information of designated recipient only. Copyright Terracotta 2006

public static void main(String args[]) throws Exception {
while(true) {

synchronized(buffer) {
int messageIndex = loopCounter++ % length;
if(messageIndex == 0) java.util.Arrays.fill(buffer, '¥u0000');

buffer[messageIndex] = message.charAt(messageIndex);
System.out.println(buffer);
Thread.sleep(100);

}
}

}
}

HelloClusteredWorld Sequence Diagram

Confidential – for information of designated recipient only. Copyright Terracotta 2006

HelloClusteredWorld Config File
<?xml version="1.0" encoding="UTF-8"?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-4.xsd">

<!-- servers and clients stanzas ommitted -->
<application>

<dso>
<roots>

<root>
<field-name> HelloClusteredWorld.buffer </field-name>

</root>
<root>

Confidential – for information of designated recipient only. Copyright Terracotta 2006

<root>
<field-name> HelloClusteredWorld.loopCounter </field-name>

</root>
</roots>
<instrumented-classes>

<include>
<class-expression> HelloClusteredWorld </class-expression>

</include>
</instrumented-classes>
<locks>

<autolock>
<lock-level>write</lock-level>
<method-expression >void HelloClusteredWorld.main(..) </method-expression>

</autolock>
</locks>

</dso>
</application>

</tc:tc-config>

Applying NAM To DB Offload

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Stateless By Hand is Cumbersome and Inefficient

� Baseline
Application

� 3 User Requests
during one
Conversation

User Conversation

Confidential – for information of designated recipient only. Copyright Terracotta 2006

� 2 POJO Updates
per Request

� Total DB Load: 9

So We Add Hibernate

� Add Hibernate

� Eliminate Direct
Connection to the
DB via JDBC

� Eliminate Hand-

User Conversation

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Coded SQL

� Eliminate
Intermediate
POJO Updates

� Total DB Load: 6

Then We Turn on Caching

User Conversation
� Enable 2nd Level

cache

� Eliminates
Intermediate
Loads

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Serialization is required
BLOB Replication requirements
are heavy

� Total DB Load: 4

So We Disconnect But Lose Availability

� Detached POJOs

� Eliminates
Intermediate
Commits

� Total DB Load: 2

User Conversation

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Can lose state in case of failure!
Replication is expensive
Hibernate says to keep graphs
small

JVM-Level Clustering + Hibernate Together

� Cluster 2nd Level Cache - Hibernate Performance Curve Level 2
� EHCache Support Built in to the product

� Advantages
� Coherent Cache Across the cluster
� Easy to integrate with existing applications
� Performs very well
� Eliminate the artificial cache misses in clustered environment

� Disadvantages

Confidential – for information of designated recipient only. Copyright Terracotta 2006

� Disadvantages
� Objects are represented as BLOBs by Hibernate
� Doesn’t take direct advantage of Terracotta Scale-Out Features

� Cluster Detached POJOs - Hibernate Performance Curve Level 3
� Cluster Pure POJOs
� Re-attach Session in the same JVM or a different JVM

� Advantages
� Scales the best
� Take Advantage of POJOs - Fine-grained changes, replicate only where resident

� Disadvantages
� Some code changes required to refactor Hibernate’s beginTransaction(), commit()

Demonstration Application

� Simple CRUD application
– Based on Hibernate Tutorial (Person, Event)
– Already Refactored for Detached POJOs
– Simple Session Management in Terracotta Environment - POJO wrapper
– Detached Strategy requires a flush operation

� CREATE OPERATION
– Creates a new Person

Confidential – for information of designated recipient only. Copyright Terracotta 2006

– Creates a new Person

� UPDATE OPERATION
– UpdateAge -> updates the age
– UpdateEvent -> creates a new event and adds to Person

� READ OPERATION
– Sets the current object to a random Person

� DELETE OPERATION
– Not implemented

� FLUSH OPERATION
– Re-attaches Session and writes modified POJO to DB

Source Code

Person person = (Person) session.load(Person.class, (long) 1);
person.getAge();
session.getTransaction().commit();
HibernateUtil.getSessionFactory().close();

for (int i = 0; i < TRANSACTIONS; i++) {
person.setAge((int) i % 100);

}
// Flush the changes

session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();

DETACHED MODE

Confidential – for information of designated recipient only. Copyright Terracotta 2006

session.beginTransaction();
session.saveOrUpdate(person);
session.getTransaction().commit();
HibernateUtil.getSessionFactory().close();

for (int i = 0; i < TRANSACTIONS; i++) {
session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
person = (Person) session.load(Person.class, (long) 1);
// update the person's age to a "random" number between 0 and 99
person.setAge((int) i % 100);

session.getTransaction().commit();
if (i % 1000 == 0) { System.out.print("."); System.out.flush(); }

}

HIBERNATE LEVEL2 CACHE MODE

Performance Tests

� ReadAgeHibernate
– 25k iterations

» Reads a Person object, reads the age, commits
– Run with and without 2nd level cache

� UpdateAgeHibernate
– 25k iterations

» Reads a Person object, updates the age, commits
– Run with and without 2nd level cache

Confidential – for information of designated recipient only. Copyright Terracotta 2006

– Run with and without 2nd level cache

� ReadAgeTC
– Reads a Person object
– Sets person object into Terracotta clustered graph
– 25k iterations

» Reads the age

� UpdateAgeTC
– Reads a Person object
– Sets person object into Terracotta clustered graph
– 25k iterations

» Updates the age
– Commits

Results: Hibernate vs. Detached POJOs

Operation Type Results

Update Hibernate ~ 1000 ops / sec

Update Hibernate + 2nd Level Cache ~ 1800 ops / sec

Update Terracotta ~ 7000 ops / sec

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Update Terracotta ~ 7000 ops / sec

Operation Type Results

Read Hibernate ~ 1000 ops / sec

Read Hibernate + 2nd Level Cache ~ 1800 ops / sec

Read Terracotta ~ 500,000 ops / sec

Case Studies

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Comparison: non-partitioned vs. partitioned scale out

� Load Balanced Application
– Publishing Company
– Happy with availability and simplicity using Hibernate + Oracle
– Not happy with scalability
– SOLUTION: Hibernate disconnected mode

� Partitioned Application

Confidential – for information of designated recipient only. Copyright Terracotta 2006

� Partitioned Application
– Travel Company
– Happy with MQ-based availability, 4 dependent apps mean no API changes

allowed
– System of Record too expensive to keep scaling
– SOLUTION: Proxy the System or Record; Partition for scale

Large Publisher Gets Caught Down the Path with Oracle

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Scaling Out or Up?

Breaking the Pattern without Leaving “Load-Balanced” World

•$1.5 Million DB & HW savings
•Doubled business
•More than halved database load

Confidential – for information of designated recipient only. Copyright Terracotta 2006

User Was Happy

� Database was still the SoR which kept reporting and backup
simple

� Scalability was increased by over 10X

� Availability was not compromised since test data was still on disk,
but in memory-resident format instead of relational

Confidential – for information of designated recipient only. Copyright Terracotta 2006

but in memory-resident format instead of relational

� …simple scalability + availability

Example Caching Service

� Reduce utilization of System of Record

� Support 4 BUs

� 10K queries / second today

� Headroom for 40K queries / second

Confidential – for information of designated recipient only. Copyright Terracotta 2006

� Headroom for 40K queries / second

� (Note: all performance goals)

BU #1 BU #2 BU #3 BU #4

Data center

Websphere MQ Series - MOM Messaging Infrastructure (JMS Topics)

MQ API MQ API

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Caching Layer

SoR

Existing MQ

Cache
Node 1

Cache
Node 27

Terracotta Server
Terracotta Server

. . .

SoR API

single pair

BU #1 BU #2 BU #3 BU #4

Data center

Websphere MQ Series - MOM Messaging Infrastructure (JMS Topics)

MQ API MQ API

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Caching Layer

SoR

Existing MQ

Cache
Node 1

Cache
Node 27

Cache
Node 14

Terracotta Server
Terracotta Server

Terracotta Server
Terracotta Server

Cache
Node 15

. . .

SoR API

. . .

BU #1 BU #2 BU #3 BU #4

Data center

Websphere MQ Series - MOM Messaging Infrastructure (JMS Topics)

MQ API MQ API

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Caching Layer

SoR

Existing MQ

Cache
Node 1

Cache
Node 27

Cache
Node 14

Terracotta Server
Terracotta Server

Terracotta Server
Terracotta Server

Cache
Node 15

.

SoR API

Stateless Software
Load Balancer

User Was Unhappy

� Simplicity was lost. The Partitioning leaked up the application
stack

� Availability was no longer easy (failure had to partition as well)

� Scalability was the only “Scale Out Dimension” delivered

Confidential – for information of designated recipient only. Copyright Terracotta 2006

Lessons Learned: Scalability + Availability + Simplicity

� Stop the Madness
– Stop the hacking! Stop the clustering!
– Start naïve and get more sophisticated on demand

� Balancing the 3 requires scalable, durable memory across JVM
boundaries (spread out to scale out)

Confidential – for information of designated recipient only. Copyright Terracotta 2006

� Simplicity ⇒⇒⇒⇒ Require no specific coding model and no hard-
coded replication / persistence points

� Scalability ⇒⇒⇒⇒ Read from Local Memory; write only the deltas in
batches

� Availability ⇒⇒⇒⇒ Write to external process + write to disk

JVM-level Clustering Addresses the Trade-offs

SIMPLE

• Honors Language Spec
across JVM boundaries

• Transparent to source
code

• Thread Coordination too

SCALABLE

• Virtual Heap

• Read from Heap

• Write deltas, only where
needed

AVAILABLE

• Persist to disk at wire
speed

• Active / Passive and
Active / Active
strategies

“ILITIES”

Confidential – for information of designated recipient only. Copyright Terracotta 2006

• Thread Coordination too
strategies

Models

• Load balanced stays
naïve

• Partitioned stays POJO
(abstractions are easy)

Models

• Load balanced scales
through implicit locality

• Partitioned scales by
avoiding data sharing

Models

• Load balanced apps
made available by
writing heap to disk

• Partitioned made
available by using the
cluster to store
workflow

Scale Out Model

Guidelines: NAM helps Load-Balanced Scale Out

� Simplicity ⇒⇒⇒⇒ Ignore the impedance mismatch. Don’t be afraid of
the DB.

� Scalability ⇒⇒⇒⇒ Just cache it! (EHCache, JBossCache, custom)
Disconnect from the DB as often as you can

� Availability ⇒⇒⇒⇒ Distributed caches can be made durable / reliable

Confidential – for information of designated recipient only. Copyright Terracotta 2006

� Availability ⇒⇒⇒⇒ Distributed caches can be made durable / reliable
and shared with JVM-level clustering

Guidelines: NAM helps Partitioned Scale Out

� Simplicity ⇒⇒⇒⇒ Never simple…but SEDA, MapReduce, master /
worker, Scala, all help

� Scalability ⇒⇒⇒⇒ Share the data not the control flow to optimize
locality

� Availability ⇒⇒⇒⇒ Guarantee either or both the events and the data

Confidential – for information of designated recipient only. Copyright Terracotta 2006

� Availability ⇒⇒⇒⇒ Guarantee either or both the events and the data
cannot be lost

� Honestly. Punt on partitioning if you can. Most people who need
it will know, based on the use case outrunning disk, network,
CPU, etc.
– Example: Pushing more than 1GBit on a single node where multiple nodes

could each push 1GBit

Thank You

� Learn more at http://www.terracotta.org/

Confidential – for information of designated recipient only. Copyright Terracotta 2006

