Kim Dalsgaard

Co-owner of, and Software Designer at Trifork Athene
Co-founder of Aarhus Ruby Brigade

REST in Ruby

How Ruby can support a RESTful architecture

What is REST?

REST is first described
in Roy Fielding’s PhD
dissertation

Architectural Styles and
the Design of

Network-based

Software Architectures

REST is one of these
architectural styles

VWWhat is an
architectural style!?

An architectural style is
about constraints

What is the constraints
for REST?

Key constraints

|dentifiable resources
Uniform interface
Stateless communication
Resource representations

Hypermedia

|dentifiable resources

® A resource represents a real or virtual
entity

® |dentified by URIs

® Each URI adds value to the Net as a whole

Uniform interface

GET
POST
PUT
DELETE

and some more

Stateless communication

® A server does not need to maintain state
for each client

® Massive advantages in terms of scalability

® Enforces loose coupling (no shared session
knowledge)

Resource representations

® Resources are always accessed through a
representation

® Resources should be represented using
well-known (standardized) content types

® HT TP provides content types and content
negotiation

Hypermedia

® Possible state transitions are made explicit
through links

® |inks are always provided by the server, not
created by the client (low coupling again)

REST Servers

How can the Ruby web
frameworks help us
with the REST

constraints?

Identifiable resources -
mapping of URLs to
controllers and
parameters

Uniform interface -
mapping of HT TP verbs
to actions

Stateless communication -
switching off the session
store

Resource representations -
executing code
according to content

type

Hypermedia - creating
URLs from objects

REST and Rails

The resource and
resources methods
for routing

ActionController: :Routing: :Routes.draw do Imapl|
map . resources :groups

end

http://localhost:4007/snippets/rails/resources
http://localhost:4007/snippets/rails/resources

class GroupsController < ApplicationController

def index # GET /groups
end

def show # GET /groups/{id}
end

def update # PUT /groups/{id}
end

def create # POST /groups
end

def destroy # DELETE /groups/{id}
end

end

http://localhost:4007/snippets/rails/controller?size=28
http://localhost:4007/snippets/rails/controller?size=28

ActionController: :Routing: :Routes.draw do Imapl|

map .resources :groups do |groupsl
groups.resources :members
groups.resource :admin

end

end

http://localhost:4007/snippets/rails/nested
http://localhost:4007/snippets/rails/nested

ActionController: :Routing: :Routes.draw do Imapl
map .resources :groups,
:has_many => :members,

‘has_one => :admin

end

http://localhost:4007/snippets/rails/has_many
http://localhost:4007/snippets/rails/has_many

The respond_to

method for executing
code according to
content type

def index
@groups = Group.find :all
respond_to do |[formatl
format.html
format.xml { render :xml => @groups }
format.json { render :json => @groups }
end
end

http://localhost:4007/snippets/rails/respond_to
http://localhost:4007/snippets/rails/respond_to

The magic _url
methods for creating
URL's from objects

groups_url
http://<host>/groups

group_url @group
http://<host>/groups/1

group_members_url @group
http://<host>/groups/1/members

group_member_url @group, @member
http://<host>/groups/1/members/2

http://localhost:4007/snippets/rails/magic_url
http://localhost:4007/snippets/rails/magic_url

The session method
for turning off sessions

class GroupsController < ApplicationController
session :off

def index # GET /groups
@groups = Group.find :all
render

end

end

http://localhost:4007/snippets/rails/session
http://localhost:4007/snippets/rails/session

REST and Merb

The resource and
resources methods
for routing

Merb: :Router.prepare do |rl
r.resources :groups

end

http://localhost:4007/snippets/merb/resources
http://localhost:4007/snippets/merb/resources

Groups < Application

index # GET /groups

show(id) # GET /groups/{id}

update(id) # PUT /groups/{id}

create # POST /groups

destroy(id) # DELETE /groups/{id}

http://localhost:4007/snippets/merb/controller?size=28
http://localhost:4007/snippets/merb/controller?size=28

Merb: :Router.prepare do |rl

r.resources :groups do |groupsl|
groups.resources :members
groups.resource :admin

end

end

http://localhost:4007/snippets/merb/nested
http://localhost:4007/snippets/merb/nested

The provides and
display methods for
rendering objects

The provides method

for registering mime-
types to render

The display method
for rendering objects

class Groups < Application
provides :yaml, :7json

def show(id)
@group = Group[id]
display @group
end

end

http://localhost:4007/snippets/merb/display
http://localhost:4007/snippets/merb/display

The url methods for
creating URLs from
objects

url(:groups)
http://<host>/groups

url(C:group, @group)
http://<host>/groups/1

url(:members, @member)
http://<host>/groups/1/members

url(:member, @member)
http://<host>/groups/1/members/2

http://localhost:4007/snippets/merb/url
http://localhost:4007/snippets/merb/url

The :sess1on_store

configuration key for
turning off sessions

Merb: :Config.use do |[cl
c[:session_store] = "none’
end

http://localhost:4007/snippets/merb/session
http://localhost:4007/snippets/merb/session

REST Clients

How can the Ruby
HT TP client libraries

help us with the REST
constraints’

Identifiable resources -
holding resource
identity

Uniform interface -
mapping of HT TP verbs
to method calls

Stateless communication -
a server responsibility

Resource representations -
setting the ‘Accept’
header

Hypermedia - fetching
and following URLs

REST and Net:HTTP

require 'net/http’
include Net

url = URI.parse('http://host/index.html")

req = HTTP: :Get.new(url.path)

res = HTTP.start(url.host, url.port) {lhttpl
http.request(req)

3
puts res.body

http://localhost:4007/snippets/nethttp
http://localhost:4007/snippets/nethttp

Too low level!

REST and rest-open-uri

require 'rest-open-uri’

uri = URI.parse "http://host/groups”

uri.open :method => :post, :body => pl do Irl
puts r.status

end

uri = URI.parse "http://host/groups/12"

uri.open "Accept" => "text/xml" do Irl
puts r.read

end

uri.open :method => :put, :body => pl do Irl
puts r.status
end

http://localhost:4007/snippets/restopenuri
http://localhost:4007/snippets/restopenuri

URI objects holding resource identity

HTTP verbs mapped to key/value pair in
options Hash

Low level access the ‘Accept’ header

No fetching and following URLs

REST and RestClient

require 'rest_client'’
include Rest(Client

groups = Resource.new 'http://host/groups’
groups.post "<group>...</group>"

group = Resource.new 'http://host/groups/12’

put group.get :accept => "application/json”

group.put "{ name: 'The Ruby Group', ...}",
:content_type => "application/json"

group.delete

http://localhost:4007/snippets/restclient
http://localhost:4007/snippets/restclient

® Resource objects holding resource identity
® HT TP verbs mapped to methods

® Easy to set the "Accept’ header

® No fetching and following URLs

® Buggy post method!

REST and
ActiveResource

require 'activeresource'

class Group < ActiveResource: :Base
self.site = "http://host™
end

group = Group.create :name => "Ruby”

group.find 1

admin = group.admin
group.name = "The Ruby Group"
group.save

group.destroy

http://localhost:4007/snippets/activeresource
http://localhost:4007/snippets/activeresource

® Base objects holding resource identity

® HTTP verbs mapped to alternative
methods

® Fetching and following URLs

® Possible to change the serialization format

® Links are not provided by the server, but
created by the client!

® Joo much additional protocol

Questions!

