
Kim Dalsgaard
Co-owner of, and Software Designer at Trifork Athene

Co-founder of Aarhus Ruby Brigade

REST in Ruby
How Ruby can support a RESTful architecture

What is REST?

REST is first described
in Roy Fielding’s PhD

dissertation

Architectural Styles and
the Design of

Network-based
Software Architectures

REST is one of these
architectural styles

What is an
architectural style?

An architectural style is
about constraints

What is the constraints
for REST?

• Identifiable resources

• Uniform interface

• Stateless communication

• Resource representations

• Hypermedia

Key constraints

Identifiable resources

• A resource represents a real or virtual
entity

• Identified by URIs

• Each URI adds value to the Net as a whole

Uniform interface

• GET

• POST

• PUT

• DELETE

• and some more

Stateless communication

• A server does not need to maintain state
for each client

• Massive advantages in terms of scalability

• Enforces loose coupling (no shared session
knowledge)

Resource representations

• Resources are always accessed through a
representation

• Resources should be represented using
well-known (standardized) content types

• HTTP provides content types and content
negotiation

Hypermedia

• Possible state transitions are made explicit
through links

• Links are always provided by the server, not
created by the client (low coupling again)

REST Servers

How can the Ruby web
frameworks help us

with the REST
constraints?

Identifiable resources -
mapping of URLs to

controllers and
parameters

Uniform interface -
mapping of HTTP verbs

to actions

Stateless communication -
switching off the session

store

Resource representations -
executing code

according to content
type

Hypermedia - creating
URLs from objects

REST and Rails

The resource and
resources methods

for routing

http://localhost:4007/snippets/rails/resources
http://localhost:4007/snippets/rails/resources

http://localhost:4007/snippets/rails/controller?size=28
http://localhost:4007/snippets/rails/controller?size=28

http://localhost:4007/snippets/rails/nested
http://localhost:4007/snippets/rails/nested

http://localhost:4007/snippets/rails/has_many
http://localhost:4007/snippets/rails/has_many

The respond_to
method for executing

code according to
content type

http://localhost:4007/snippets/rails/respond_to
http://localhost:4007/snippets/rails/respond_to

The magic _url
methods for creating
URL’s from objects

http://localhost:4007/snippets/rails/magic_url
http://localhost:4007/snippets/rails/magic_url

The session method
for turning off sessions

http://localhost:4007/snippets/rails/session
http://localhost:4007/snippets/rails/session

REST and Merb

The resource and
resources methods

for routing

http://localhost:4007/snippets/merb/resources
http://localhost:4007/snippets/merb/resources

http://localhost:4007/snippets/merb/controller?size=28
http://localhost:4007/snippets/merb/controller?size=28

http://localhost:4007/snippets/merb/nested
http://localhost:4007/snippets/merb/nested

The provides and
display methods for

rendering objects

The provides method
for registering mime-

types to render

The display method
for rendering objects

http://localhost:4007/snippets/merb/display
http://localhost:4007/snippets/merb/display

The url methods for
creating URLs from

objects

http://localhost:4007/snippets/merb/url
http://localhost:4007/snippets/merb/url

The :session_store
configuration key for
turning off sessions

http://localhost:4007/snippets/merb/session
http://localhost:4007/snippets/merb/session

REST Clients

How can the Ruby
HTTP client libraries
help us with the REST

constraints?

Identifiable resources -
holding resource

identity

Uniform interface -
mapping of HTTP verbs

to method calls

Stateless communication -
a server responsibility

Resource representations -
setting the ‘Accept’

header

Hypermedia - fetching
and following URLs

REST and Net::HTTP

http://localhost:4007/snippets/nethttp
http://localhost:4007/snippets/nethttp

Too low level!

REST and rest-open-uri

http://localhost:4007/snippets/restopenuri
http://localhost:4007/snippets/restopenuri

• URI objects holding resource identity

• HTTP verbs mapped to key/value pair in
options Hash

• Low level access the ‘Accept’ header

• No fetching and following URLs

REST and RestClient

http://localhost:4007/snippets/restclient
http://localhost:4007/snippets/restclient

• Resource objects holding resource identity

• HTTP verbs mapped to methods

• Easy to set the ‘Accept’ header

• No fetching and following URLs

• Buggy post method!

REST and
ActiveResource

http://localhost:4007/snippets/activeresource
http://localhost:4007/snippets/activeresource

• Base objects holding resource identity

• HTTP verbs mapped to alternative
methods

• Fetching and following URLs

• Possible to change the serialization format

• Links are not provided by the server, but
created by the client!

• Too much additional protocol

Questions?

