
Ruby on the JVM
Kresten Krab Thorup, Ph.D.

CTO, Trifork

IBMSun

A bit of history...

Smalltalk

Self

Strongtalk

HotSpot

OTI Smalltalk

IBM Java

VisualAge

Adaptive Optimizations

• Key insight: The VM knows more about
your program than you do.

• Consequence: Let the VM adapt to
program’s behavior

• VM will observe, tally and measure

• feed information into successive
optimizations

Time/Space Trade Off

• Classical compiler “ideology”

• “ahead of time” compilers don’t know
which parts of the code to optimize

• gcc -O0 ... -O6

• Adaptive VMs

• Affords letting the program run for a while
to see where optimizations will pay off.

The Ruby Nature

• Program is created as it is being
executed

• Class / module declarations are really
statements, not declarations.

• Programming style employs meta
programming extensively

• Very similar to Java, just “worse” :-)

“Just In Time” VMs

• For interpreted-style languages, perform
compilation when the program definition is
known.

• AFAIK Strongtalk/HotSpot brought the
innovation of a two-level VM:

• start interpreted (running byte code)

• optimize adaptively

The “HotRuby” project

• Explore a “Server VM” for Ruby
based on Java

• Assume “long running processes” where we
can afford “slow start”.

• Assume aggressive memory usage

• Exploit knowledge of how the JVM
optimizes programs

HotRuby Architecture

interpreter compiler

~MRI performance ~2.5 x YARV performance

shared meta
model

Design Philosophy

• Develop compiler and interpreter in
parallel, and

• Favor compiler in the design of the runtime
meta model

• Make trade-offs that reduce memory usage

• Write as much as possible in Ruby itself

Major Head Aches

• Method invocation

• Calling “virtual” methods is slow

• Program can change in many ways while
running

• Memory management

• Garbage collection is a resource hog

Naive Implementation

class RubyObject {
 RubyClass isa;
 HashTable<String,RubyObject> ivars;
 boolean frozen, tainted;
}

Naive Implementation

class RubyModule extends RubyObject {
 RubyVM vm;
 List<RubyModule> included_modules;
 HashTable<String,Callable> imethods;
 HashTable<String,Callable> mmethods;
 HashTable<String,RubyObject> constants;
}

class RubyClass extends RubyModule {
 RubyClass super_class;
}

Naive Implementation

class Callable {
 RubyObject call(RubyObject self,
 RubyObject[] args,
 RubyBlock block,
 CallContext ctx);
}

Naive Implementation
def m(obj)
 obj.foo(1, BAR)
end

... translates into something like ...

ctx = new MethodActivation(...);
ctx.set_local(0, args[0]);
obj = ctx.get_local(0)
one = ctx.new_fixnum(1);
bar = ctx.lookup_const(“BAR”);
callable = obj.isa.imethods.get(“foo”);
callable.call(obj, [one, bar], null, ctx)

Naive Implementation

Java level

Ruby level

Optimizing Calls

• Special-case common method names for
core classes (new, +, -, [], ...): They turn into
Java-level virtual calls.

• Compiled code is “specialized”, ...

• Method lookup is “compiled”, ...

Method Specialization

• Compiled code is “specialized” for the
receiving type,

• making self-calls non virtual,

• reducing public/private/protected checks:
Security-checks happen at method-
lookup, not invocation time.

• making constant lookups really constant.

Compiled Lookup

• With the “Naive” implementation, method
lookup is data-driven (HashTable).

• Compiled lookup means that we dynamically
generate/modify code, as the lookup table
changes.

• Allows the JVM’s optimizing compiler to
“know” how/when to eliminate or inline
lookups.

Reduce Footprint

• Reduce size of heap for “active state” in a
virtual machine

• Reduce “object churn”, i.e. rate of generated
garbage.

Reducing Footprint
• Java objects already have an “isa” pointer!

The implicit class reference.

• Use Java-level instance variables (in most
cases)

• Eliminate the arguments array for method
invocations (in most cases).

• Use Java-level local variables, removing the
need for a “MethodActivation” object for
each method call.

HotRuby Object
class RubyFoo {
 ObjectState state = null;
 RubyClass isa()
 { return state==null
 ? RubyClassFoo.class_object
 : state.singletonClass; }
}

class ObjectState {
 boolean frozen, tained;
 RubyClass singletonClass;
 HashTable<String,RubyObject> ivars;
}

HotRuby @ivars

• Generate Java classes lazily, upon first
instantiation.

• At that point, analyze all applicable methods
for reference to @ivars

• Generate Java-level ivars for all such
references.

• Additional ivars go into ObjectState’s hash
table.

Reducing Footprint

• The “Naive” implementation has an
overhead per object of
 20 bytes + ~20 bytes / ivar

• HotRuby ideally reduces this to
 12 bytes + 4 bytes / ivar

• Heap of 100.000 object with an average 3
ivars => 83% memory saving.

Use Java-Level locals
• The “cost” for having MethodActivation

objects is both

• The memory it consumes

• The fact that such memory needs to be
garbage collected

• Fall-back to MethodActivation object
strategy for methods that call eval (and
friends), and for local variables referenced
from inner blocks.

HotRuby Status

• Runs basic Ruby programs (most
importantly runit)

• No Continuations, ObjectSpace,
debugger, ... and many core classes

• Performance at 2.5 x YARV

• No, it does not run Rails.

Thanks

