.
RV ;
. —

P

RubyFools, Cph., April 1 - 2, 200

A Pragmatic

Introduction to REST

Stefan Tilkov, stefan.tilkov@innog.com

mailto:stefan.tilkov@innoq.com
mailto:stefan.tilkov@innoq.com

Stefan Tilkov

iInno Q!
http://www.innoQ.com

stefan.tilkov@innog.com

http://www.innog.com/blog/st/

InfoQ

174,255 Sep unique

http://www.InfoQ.com

http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/
mailto:stefan.tilkov@innoq.com
mailto:stefan.tilkov@innoq.com
http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/

Audience Poll

How many of you make money doing Rails!?
Percentage of Rails users developing RESTfully?
How many are just learning Ruby/Rails?

How many want to learn what REST is about?

How many know REST and want to see where
I'm wrong!?

What is REST?

3 definitions

REST:An Architectural Style

One of a number of “architectural styles™
... described by Roy Fielding in his dissertation

... defined via a set of constraints that have to
be met

... architectural principles underlying HT TP,
defined a posteriori

... With the Web as one particular instance

See: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

REST:The Web Used Correctly

A system or application architecture

... that uses HT TP, URI| and other Web
standards “correctly”

..is “on”” the Web, not tunneled through it

.. also called “WOA”,“ROA”, “RESTful HTTP”

REST: XML without SOAP

Send plain XML (w/o a SOAP Envelope) via
HTTP

... violating the Web as much as WS-*
... preferably use GET to invoke methods
... or tunnel everything through POST

... commonly called “POX”

Only option | is the right one

(because Roy said so)

But we’ll go with option 2

(and equate “REST" with
“RESTful HTTP usage”)

and avoid option 3 like

the plague

REST Explained

in 5 Easy Steps

|. Give Every “Thing” an ID

http://example.

http://example.
http://example.

http://example

com/customers/1234

com/orders/2007/10/776654
com/products/4554

.com/processes/sal-1ncrease-234

http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/orders/2007/10/776654
http://example.com/orders/2007/10/776654
http://example.com/products/4554
http://example.com/products/4554
http://example.com/processes/sal-increase-234
http://example.com/processes/sal-increase-234

2. Link Things To Each Other

<order self="http://example.com/orders/1234°>
<amount>23</amount>
<product ref="http://example.com/products/4554° />
<customer ref="http://example.com/customers/1234° />
</order>

http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234
http://example.com/customers/1234

3. Use Standard Methods

GET

retrieve information, possibly cached

PUT

Update or create with known |ID

POST

Create or append sub-resource

DELETE

(Logically) remove

4.Allow for Multiple
“Representations”

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

<customer>...</customer>

GET /customers/1234
Host: example.com
Accept: text/x-vcard

begin:vcard

end:vcard

5. Communicate Statelessly

GET /customers/1234
Host: example.com
Accept: application/vnd.mycompany.customer+xml

<customer><order ref=’./orders/46’</customer>

shutdown

update software
replace hardware
startup

GET /customers/1234/orders/46

Host: example.com
Accept: application/vnd.mycompany.order+xml

<order>...</order>

Consequences

OrderManagementService

+ getOrders()

+ submitOrder()

+ getOrderDetails()

+ getOrdersForCustomers()
+ updateOrder()

+ addOrderltem()

+ cancelOrder()

/orders

GET - list all orders

PUT - unused

POST - add a new order
DELETE - unused

/orders/{id}

«interface»
Resource

GET - get order details
PUT - update order
POST - add item
DELETE - cancel order

/customers

CustomerManagementService

GET
PUT
POST
DELETE

+ getCustomers()

+ addCustomer()

+ getCustomerDetails()
+ updateCustomer()

+ deleteCustomer()

GET - list all customers
PUT - unused

POST - add new customer
DELETE - unused

/customers/{id}

GET - get customer details
PUT - update customer
POST - unused

DELETE - delete customer

/customers/id}/orders

GET - get all orders for customer
PUT - unused

POST - add order

DELETE - cancel all customer orders

Cheating?

Maybe.

many

Data types

Operations
many

Instances

very few
(one per service)

OrderManagementService

+ getOrders()

+ submitOrder()

+ getOrderDetails()

+ getOrdersForCustomers()
+ updateOrder()

+ addOrderltem()

+ cancelOrder()

CustomerManagementService

+ getCustomers()

+ addCustomer()

+ getCustomerDetails()
+ updateCustomer()

+ deleteCustomer()

many

/orders

Data typeS GET - list all orders
PUT - unused

POST - add a new order
DELETE - unused

/orders/id}
GET - get order details
PUT - update order
POST - add item
DELETE - cancel order

«interface» /customers
Resource

I GET - list all customers
Sllﬂ PUT - unused
POST POST - add new customer
DELETE DELETE - unused

/customers/{id}

GET - get customer details
PUT - update customer
POST - unused

DELETE - delete customer

Operations Instances

/customers/id}/orders
Ve r)’ feW m a’ ny GET - get all orders for customer
PUT - unused

f‘ d POST - add order
|Xe DELETE - cancel all customer orders

Designing a RESTful Application

|dentify resources & design URIs
Select formats (or create new ones)
ldentify method semantics

Select response codes

See: http://bitworking.org/news/How_to_create_a_REST_Protocol

http://bitworking.org/news/How_to_create_a_REST_Protocol
http://bitworking.org/news/How_to_create_a_REST_Protocol

What'’s cool about

REST?

A very rough analogy

(in pseudocode)

generic

interface Resource {
Resource(URI u)

Response get()

Response post(Request r)
Response put(Request r)
Response delete()

class CustomerCollection : Resource {

Response post(Request r) {
1d = createCustomer(r)
return new Response(201, r)

A

\4

specific

Any HTTP client

(Firefox, IE, curl, wget)

Any HTTP server
Caches

Proxies

Google,Yahoo!, MSN

Anything that knows

your app

interface Resource {

class AtomFeed : Resource {
AtomFeed get()
post(Entry e)

class CustomerCollection

h

generic

. AtomFeed {

A

\4

specific

Anything that

understands HT TP

Any feed reader

Any AtomPub client

Yahoo! Pipes

Anything that knows

your app

Some HT TP Features

Verbs (in order of popularity):
GET, POST

PUT, DELETE
HEAD, OPTIONS, TRACE

Standardized (& meaningful) response codes

Content negotiation
Redirection

Caching (incl. validation/expiry)
Compression

Chunking

RESTful HT TP Advantages

Universal support (programming languages, operating
systems, servers, ...)

Proven scalability

Real web integration for machine-2-machine
communication

Support for XML, but also other formats

REST and Web Services

(very briefly, | promise)

Web Services Issues

Web Services are “Web” in name only
WS-* tends to ignore the web
Abstractions leak, anyway

Protocol independence is a bug, not a feature

Web Services

OrderManagementService

+ getOrders()

+ submitOrder()

+ getOrderDetails()

+ getOrdersForCustomers()
+ updateQOrder()

+ addOrderltem()

+ cancelOrder()

+ cancelAllOrders()

CustomerManagementService

+ getCustomers()

+ addCustomer()

+ getCustomerDetails()
+ updateCustomer()

+ deleteCustomer()

+ deleteAllCustomers()

A separate interface (facade)
for each purpose

As known CORBA, DCOM,
RMI/EJB

Often used for SOA
(“CORBA w/ angle

brackets)

Application-specific protocol

Contribution to the Net’s Value

2 URLs

http://example.com/customerservice
http://example.com/orderservice

| method
POST

REST Approach

/orders

GET - list all orders

PUT - unused

POST - add a new order
DELETE - cancel all orders

/orders/id}

«interface»
Resource

GET - get order details
PUT - update order
POST - add item
DELETE - cancel order

/customers

GET
PUT
POST
DELETE

GET - list all customers

PUT - unused

POST - add new customer
DELETE - delete all customers

/customers/{id}

GET - get customer details
PUT - update customer
POST - unused

DELETE - delete customer

/customers/{id}/orders

GET - get all orders for customer
PUT - unused

POST - add order

DELETE - cancel all customer orders

A single generic (uniform)
interface for everything

Generic verbs mapped to
resource semantics

A standard application
protocol (e.g. HTTP)

Contribution to the Net’s Value

Millions of URLs
every customer
every order
4-6 supported methods per resource

GET, PUT, POST, DELETE, OPTIONS, HEAD

Cacheable, addressable, linkable, ...

REST s SOA

Business

SOA as an approach to business/IT alignment

Architecture

Technical SOA

Technology

SOAPWSDL,WS-*

(RESTful) HTTP, URI, ...

Copyright (c) 2007 innoQ

REST as an

alternative way to
achieve SOA goals

REST & Rails

Rails < 2.0

.draw do [map]
®oL
map . connect

)

:controller/:action/:1id"

N N

http://localhost:3000/demo/read something?!value |l =...&value2=...

DemoController icationController

read_something
retrieve some result using params[:valuel], params[:valuel],

change_something
update backend using params[:valuel], params[:valuel],

Rails < 2.0

Default (incl. scaffolding) unRESTful

URIs identify actions

No difference between POST and GET by
default

Typical PHP/Java Web programming model

Rails = 2.0

ActionController::Routing: :Routes.draw do Imapl
map.resources :orders
end

orders
formatted_orders

hew_order
formatted_new_order
edit_order
formatted_edit_order
order
formatted_order

GET
GET
POST
POST
GET
GET
GET
GET
GET
GET
PUT
PUT

/orders

/orders. :format
/orders

/orders. :format
/orders/new
/orders/new. : format
/orders/:1d/edit
/orders/:1d/edit. :format
/orders/:1d
/orders/:1id. :format
/orders/:1d
/orders/:1id. :format

DELETE /orders/:id
DELETE /orders/:id.:format

el e N e N N e N e N e Nae N Nae

:controller=>"orders",
:controller=>"orders",
:controller=>"orders",
:controller=>"orders",
:controller=>"orders",
:controller=>"orders",
:controller=>"orders",
:controller=>"orders",
:controller=>"orders",
:controller=>"orders",
:controller=>"orders",
:controller=>"orders",
:controller=>"orders",
:controller=>"orders",

raction=>"1index"}
raction=>"1ndex"}
raction=>"create"}
raction=>"create"}
raction=>"new"}
raction=>"new"}
raction=>"edit"}
raction=>"ed1it"}
raction=>"show"}
:action=>"show"}
:action=>"update"}
:action=>"update"}
:action=>"destroy"}
:action=>"destroy"}

Demo

How RESTful is Rails?

Positive:

Consistent and clean CRUD mapping
Use of URIs for resource identification
Support for content negotiation

Reasonable Status codes

ETags (!)

How RESTful is Rails?

Negative:

No hypermedia
No deep ETags
CRUD-centric

Proprietary protocol for ActiveResource

My Rails/REST WVishlist

A really cool, meta-driven hypermedia
programming model

for both client and server (w/o coupling)

Atom Syndication and Atom Pub Support

If You VWant to Know More

http://www.innog.com/resources/REST

http://www.innoq.com
http://www.innoq.com

Web Services for the Real World

O'REILLY"

http://www.oreilly.com/catalog/9780596529260/

http://www.oreilly.com/catalog/9780596529260/
http://www.oreilly.com/catalog/9780596529260/

N -

S| - - . L

L —

I

=

« >‘] [¢] [-+] %7 http: / /www.infog.com/

~ |

r .4
Al Q- Inquisitor

;: Random Stuff innoQ

InfoQ SOA-Expertenwissen Txp»SOA-E...ertenwissen innoQ Partner banking awstats js 1&1 OIBC.DE AR RailsDocs

InfoQ

174,255 Sep unigue visitors

'a

U‘ =
T SAN FRANCISCO-= \

Nov. 79 2007
S400 off until pr 30th

Welcome, Stefan!

Sign out
Preferences
About us
Personal feed £
Home

Your Communities

v Java

).NET

¥ Ruby

v/ SOA

1 Agile

¥ Architecture

Search

Featured Topics

Performance &
Scalability

SOA Governance

Public Beta
Now Available

h
Tracking change and innovation in the enterprise software development Version 1.4 En | X | BZEE
community
New & Notable Written for InfoQ by the Community Exclusive Content
DynamicJasper: Runtime generation of Jasper Reports ==|, Steve Sloan on BizTalk Server
Community Java Topics Open Source — 2006 R2
DynamicJasper, an open-source APl which provides runtime generation of InfoQ talked to Microsoft ==
Jasper Reports, recently released version 1.3. InfoQ took the opportunity to Steve Sloan, Senior " s
learn more about this product, and what it provides for users. By Ryan Slobojan Product Manager, g 5
on Oct 08) Discuss about the BlzTa!k A
Server 2006 R2 in the context of ®
Presentation: Architecture Evaluation in Practice SOA. SOA, Oct 04,2007, '/ —
Community Architecture Topics Delivering Quality, Enterprise Sponsored Links = -
Architecture o _ . The Scalability ==], Open Source WS Stacks for Fi
Dragos Manolescu shares insights gained from growing Revolution SBA —7 Java- Design Goals and o
ThoughtWorks' architecture evaluation practice and and the end of tier- Philosophy El
| evaluating several architectures for Global 1000 based computing. InfoQ spoke to the =
companies. These msn.ght.s aim at preparing people Rule your SOA lead developers of §
pal’thIpatlng |n, or an h .// O f open source Java o~
evaluation to tackle tf ttP. WWW.IN Oq COIM Web-services stacks @
Marinescu onOct08 '~/ D : ;]
4 Deploy Ajax & Flash about their design - =
| Apps to the goals, standards, data binding, 2
Ruby and the hype cycle Desktop. XML, interoperability, REST support, =
4 Community Ruby Topics Performance & Scalability, Ruby on Rails, Free download of and maturity. SOA, Java, Oct 04, 2007, 5,
Stories & Case Studies Adobe Integrated Q7 _—)
. . . . Runtime Beta i
A recent blog post on a failed Rails project caused a big : U
debate about the viability of Ruby on Rails. A closer look . . o
at the post paints a different picture, though. We take a look at the reactions == Cmdmg dyna'nlcweb 8
in the Ruby community, and compare this discussion with the upheaval — applications with X
about Twitter earlier this year. By Werner Schuster on Oct 08 ' 3 comments JSF/DWRIDQJO e
JSF, DWR, and Dojo
Adobe Max 2007 North America - Wrap Up BFE Al popisar
Community Java Topics Rich Client / Desktop, Acquisitions, Rich Internet Apps technologies in
, _) their own right.
Adobe was busy this week showing off their latest work at the 2007 Max . -
))) This article looks at how they can
Conference. Adobe continues to cater to developers with many of their . .
P iy : th ber of i) q " be integrated together in a portal
efforts. The conference came with a number of interesting and exciting environment. Java, Oct04, 2007,) 1
announcements for the developer community including: By Jon Rose on Oct 05
) Discuss 1
"% Architecture Evaluation in v

http://www.infoq.com
http://www.infoq.com

Thank you!

InnoQ

http://www.innoq.com/blog/st/
innoQ Deutschland GmbH innoQ Schweiz GmbH

Stefan.ti I I(OV@innoq.COm HalskestraBe 17 Gewerbestrasse 11

D-40880 Ratingen CH-6330 Cham
Phone +49 2102 77162-100 Phone +41417430111
info@innog.com - www.innog.com

http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/
http://www.innoq.com/blog/st/

Photo Credit

http://en.wikipedia.org/wiki/lmage:Sangreal.jpg

