
Ruby on .NET

Dr Wayne Kelly
Queensland University of Technology

Australia

Language vs Implementation

ANSI Standard C++

GNU C++ Borland C++ Microsoft VC++ …

ANSI Fortran 77

Intel Fortran GNU Fortran Sun Fortran …

2

ECMA Standard C#

Microsoft C# Mono C# …

Java Language

Sun Hotspot IBM J9 VM …Kaffe JVM

Python Language

PyPy Jython …IronPython

Ruby Implementations

Ruby Language (version 1.8.6)

Matz’s
Ruby

Interpreter

YARV
Ruby on

new Ruby

JRuby

Ruby

Ruby.NET &
IronRuby

Ruby

Rubinius

Ruby

…

3

Interpreter
C based

interpreter

new Ruby
Virtual

Machine

Ruby
on

JVM

Ruby
on

.NET

Ruby
on

Ruby

RSpec
• Evolving Ruby language specification
• DSL for Behaviour Driven Development (BDD)

Ruby on .NET

• Ruby.NET (2005 – 2008)
– Developed by Queensland University of Technology, Australia
– Built directly on top of .NET CLI

4

• Wilco Bauwer IronRuby (2006 – 2007)
– Dutch college student

• Microsoft IronRuby (2007 -)
– Developed by Microsoft
– Built on top of .NET Dynamic Language Runtime (DLR)

Why Ruby on .NET

• Adds another language to the .NET stable of languages
– everyone should be able to choose their favourite language

• Provides Ruby programmers with access to .NET stuff
– .NET system libraries such as GUI forms
– Easy interop with other .NET components
– .NET tools such as Visual Studio, profiling, debugging, etc.

5

– .NET tools such as Visual Studio, profiling, debugging, etc.

• Where context or policy requires development to be
done using .NET
– eg requirement for fully managed and verifiable components to

achieve sandboxed security.

• May provide better performance than MRI.
• New execution context possibilities (such as Silverlight).

Ruby on .NET Stack

Microsoft’s DLR
(Dynamic Language Runtime)

Microsoft’s
IronRuby

Microsoft’s
IronPython

Phalanger
(PHP)

Ruby.NET

Rails

Rails apps

.NET
apps

Ruby apps

6

.NET Common Language Infrastructure (CLI)

Microsoft’s
Common
Language
Runtime

(CLR)

Microsoft
Windows

Mono
Open source
Sponsored
by Novell

Li
nu

x

M
ac

 O
S

W
in

do
w

s

U
ni

x
Microsoft’s
Silverlight

F
ire

fo
x

Moonlight

S
af

ar
i

In
te

rn
et

E
xp

lo
re

r

Microsoft
Windows

Mac OS X Linux

Mozilla

Ruby.NET Demo

GUI Forms Design

Implementing a Compiler

Source language: Ruby
Target platform: .NET CLI

1. Create scanner and parser from grammar specification
2. Define and build Abstract Syntax Tree

8

2. Define and build Abstract Syntax Tree
3. Translate language constructs into platform instructions

Expected Result: an efficient implementation

Ruby.NET (2005 – 2008)

1. Scanning and Parsing
• No clean simple language spec and grammar
• Needed to create our own YACC like tool for C# (GPPG)

2. AST
• Large, but relatively straight forward

9

• Large, but relatively straight forward

3. Translation from Ruby constructs to CLI
• Direct translation doesn’t work due to dynamic semantics

4. Built-in classes, modules and standard libraries
• Massive amount of porting from native C code to C#

Result: Often slower than MRI

IronRuby (2007 -)

1. Scanning and Parsing
• Licensed the Ruby.NET scanner and parser

2. AST
• Created their own (similar) AST

10

3. Translation from Ruby constructs to CLI
• Strongly leveraged the Dynamic Language Runtime (DLR).

4. Built-in classes, modules and standard libraries
• Implementation based on RSpec
• Optimized for use with DLR.

Goals and Priorities

1. Semantic compatibility with MRI
– run existing Ruby applications correctly without change

2. .NET Interoperability
– use other .NET components from Ruby
– use Ruby components from .NET

11

– use Ruby components from .NET

3. Performance

Ruby.NET Approach

Ruby
Source

files
Ruby

Source
files

Ruby
Source

files

RubyCompiler.exe
Native
Code

ExecutionJIT

.NET
exe or dll

.NET
exe or dll

12

Ruby
Source

file Ruby.exe

.NET
exe

Native
Code

ExecutionJIT

memory stream

Calling Ruby Methods

• Everything in Ruby is a method call, even:

x+1
– unfortunately, doesn’t translate into native addition
– if x is a Fixnum, calls Fixnum.+

13

– if x is a Fixnum, calls Fixnum.+
– we don’t generally know the type of x at compile time
– the standard Fixnum.+ can be replaced
– the standard Fixnum.+ is non trivial

Ruby Method Dispatch

Parent Class
method

method

…

Foo

14

Ruby Object Ruby Class
method
method
method
method1) Determine

class of
receiver object

receiver.Foo(arg1, …., argn)

2) Locate method
in dictionary

3) Invoke method

Fixnum.+ (Ruby.NET)

15

Fixnum.+ (IronRuby)

16

Dynamic Call Sites (with DLR)

x = 42
…

x+1
• One DynamicSite object per call site.
• In this case, we know second argument is always Fixnum

17

• In this case, we know second argument is always Fixnum
• After first call, we expect x to be a Fixnum subsequently.
• Optimize call site to simply test that x is Fixnum and then

call Fixnum.Add(int, int)

• If test(s) fails, call UpdateBindingAndInvoke to
dynamically generate new lightweight code with new tests

• Self updating call sites– dynamically optimized.
• Note: also need to check that class hasn’t been modified.

.NET →→→→ Ruby Interop (Ruby.NET)

class Foo < Bar
def print(a, b)

...
end
if (Verson < 2.9)

def optimize(x)
...

end
end

end

public class Foo: Bar
{
public object print(object a, object b)
{
return Eval.Call(this, "print", a, b);

}
}

public class Foo_print: MethodBody
{

18

end

x = Foo.new

{
public override object Call(...) {
...

}
}

public class Foo_optimize: MethodBody
{
public override object Call(...) {
...

}
}

object x = Eval.Call(Foo, "new");

Ruby →→→→ .NET Interop

Syntax: require 'Fred'

• May load:
– Fred.rb (Ruby source code), or
– Fred.so (Native Ruby extension library), or
– Fred.dll (a normal .NET component).

• Loading a .NET component causes Ruby classes to be

19

• Loading a .NET component causes Ruby classes to be
created and populated using .NET reflection.

• .NET classes and methods can then be used like normal
Ruby classes and methods.

• .NET method overloading requires runtime resolving
• ref and out parameters also pose a challenge.
• To what extent should we do automatic coercion?

Project Status and Future

• I am no longer working on Ruby.NET
• IronRuby:

– Involved as an external contributor
– Still in prototype stage

20

– Still in prototype stage
• you can try it out today, but not yet suitable for production use.
• currently supports most language features

(still missing continuations, green threads and eval)
• currently supports most built-in classes and modules and some

native standard libraries (seeking external contributions)

– Next major goal is to support Gems and Rails
• hope to have Hello World rails app working by RailsConf.

Links & Questions?

Wayne Kelly:
• Queensland University of Technology, Australia
• w.kelly@qut.edu.au

Ruby.NET:
• http://code.google.com/p/rubydotnetcompiler/

21

• http://code.google.com/p/rubydotnetcompiler/
• http://rubydotnet.googlegroups.com/web/Home.htm

IronRuby:
• http://www.ironruby.net/
• http://rubyforge.org/projects/ironruby
• http://rubyforge.org/mailman/listinfo/ironruby-core

