
Versioning your object model
Ole Friis Østergaard

RubyFools 2008

Agenda

 Why do versioning?
 Walk-through of Rails plug-ins

– What do they do?
– How do you use them?
– Problems and advantages.
– Examples.

 What not to version?

Who am I?

 Ole Friis Østergaard
 Software Pilot, Trifork A/S
 Not a native English-speaker
 Professional work: .NET, Java
 Semi-professional work, spare time: Ruby
 TDD enthusiast

– ...though we'll do slide-driven development the
next hour...

Which problems do we solve?

 The user regrets pressing that “Delete project”
button.

 You want to track the changes to certain
objects.

 You need to know who changed an object, in
order to ask him why.

Our demo application

 Really simple and ugly.
 Create/read/update/delete projects and tasks.
 Let's have a quick look at it.

Walk-through of plug-ins

 Rails makes it easy to be creative when doing
plug-ins!

 Really simple pieces of code that do exciting
stuff.

 Very non-intrusive.
 Easy to use.
 Different angles on the versioning problems.

acts_as_logged

acts_as_logged

 Makes a ”shadow copy” of your normal
database entries.

 Makes it easy to comply with laws concerning
logging.

 Cannot show the history.
 Created by some of my colleages at Trifork.
 No official homepage (yet).
 Copy plug-in manually.

What to do?

Annotate with acts_as_logged

create_table :projects, :history => true do |t| ...
drop_table :projects, :history => true

How does it work?

 Whenever a model object is saved, updated,
or deleted, creates new row in the
corresponding logging table.

Data model

task_versions
* name
* description
* user
* updated_at
*create/update/delete

projects_history
* name
* description
* user
* updated_at
* create/update/delete

projects
* name
* description *

*
tasks

* name
* description *

Problems?

 No built-in functionality to read the history
items.

 New history table for each logged model
class.

However...

 Very simple solution to simple problem.

acts_as_versioned

acts_as_versioned

 Makes “shadow copies” of rows in the
database.

 Makes it possible to view these old versions.
 http://ar-versioned.rubyforge.org/
 ruby script/plugin install acts_as_versioned

What to do?

Don't access associations

Annotate with
“acts_as_versioned”

Extend tables with “version”
column, create new
{singular}_versions tables with
{singular}_id columns

How does it work?

 Whenever a model object is saved or updated,
creates new row in the corresponding version
table.

 When finding previous versions, instances of
OriginalClass::Version are returned.

Data model

task_versions
* name
* description
* version

project_versions
* name
* description
* version

projects
* name
* description
* version

*

*
tasks

* name
* description
* version

*

Problems?

 Versioning local to each object, i.e.
associations do not work on old versions.

 Adds an extra table to each of your original
tables.

 Since the old versions are given as another
class, your own logic methods
(“short_description”, “sum_of_expenses”)
will not work.

However...

 Mature plug-in, has been used “in the wild”.
 Easy to set up.
 Simple concept.
 Perfect for wikis.

acts_as_paranoid

acts_as_paranoid

 Calling destroy simply sets a “deleted_at” flag.
 Therefore, deleted objects can still be found.
 Not really a versioning plug-in, but solves part

of the problem.
 http://ar-paranoid.rubyforge.org/
 ruby script/plugin install acts_as_paranoid

What to do?

Extend tables with
“deleted_at”

Annotate with
“acts_as_paranoid”

Data model

projects
* name
* description
* deleted_at

*
tasks

* name
* description
* deleted_at

Problems?

 Not protected against updates, only deletes.
 Queries are altered by the plug-in in order to

filter result.
 Not really a versioning plug-in.

However...

 Extremely simple.
 No new tables.
 Can be used in conjunction with

acts_as_versioned.

acts_as_versioned_association

acts_as_versioned_association

 Extends the functionality of acts_as_versioned.
 Annotate model objects.
 http://livsey.org/2006/8/13/major-update-to-

acts_as_versioned_association/
 Might be cool.
 No real documentation.
 So, no details here!

Rails Undo Redo

Rails Undo Redo (rur)

 Undo/redo user actions, as known from e.g.
paint programs.

 Annotate model classes and controllers.
 http://blog.nanorails.com/rails-undo-redo
 Ruby script/plugin install

http://svn.nanorails.com/plugins/rur

What to do?

Copy 001_create_undo_records.rb from
plugins/rur/migrations here.

Annotate with
”acts_as_undoable”.

Call ”undoable_methods” in
class definition.
Wrap method contents in the
”change” method.

<p><%= undo_redo_links %></p>

In routes.rb:
map.undo 'undo', :controller => 'cont', :action => 'undo'
map.redo 'redo', :controller => 'cont', :action => 'redo'

How does it work?

 Keeps track of the model object changes
wrapped in the ”change” method.

 Serialized model objects are stored in a separate
table.

 When undoing/redoing, the serialized objects
are restored.

 Each session has its own ”undo manager”
which tracks the current user's
undoable/redoable actions.

Data model

undo_record:
* operation
* class
* data

undo_action:
* description
* undo_redirect
* redo_redirect

undo_manager

*

*

Private to the
users's session

The changes
performed
inside a
”change” chunk

Single model
object serialized

projects
* name
* description

*
tasks

* name
* description

Problems?

 The undo/redo trail is local to the users, so a
user can undo the creation of an object that
another user has later been dependent on.

 System-wide maximum size of single serialized
model objects (default 2MB).

 What happens when developing the database
schema?

 Serializes objects in the session cookie.

However...

 Easy to set up.
 Only 3 new database tables.
 User scope of undo/redo trail is not a problem

in many scenarios.
 Incredibly cool!

acts_as_logged
acts_as_versioned
acts_as_paranoid
acts_as_versioned_association
Rails Undo Redo

acts_subversive

acts_subversive

 Like acts_as_logged, but can fetch old
versions.

 Like acts_as_versioned, but works with
associations and your own logic methods.

 http://acts-subversive.rubyforge.org/
 ruby script/plugin install svn://rubyforge.org/

var/svn/acts-
subversive/tags/0.1/acts_subversive

What to do?

create_version_number_table
drop_version_number_table

create_versioned_table :projects do |t| ...
drop_versioned_table :projects

Annotate with “acts_subversive”

How does it work?

 Keeps a global, always increasing version
number that gets stamped on the shadow
copies.

 Only makes shadow copies of the updated
objects, not the objects they reference (unless,
of course, they have been updated too).

 When traversing associations, keeps the version
number from the first find_version call.

 Complex SQL for finding associated objects.

Data model

task_versions
* name
* description
* deleted

project_versions
* name
* description
* deleted

projects
* name
* description *

*tasks
* name
* description *

version_numbers
* created_at
* user

*

*

Problems?

 has_and_belongs_to_many unsupported.
 Inheritance unsupported.
 (n+1) new tables when versioning n classes.

However...

 Traversing associations back in time actually
does work.

 Your own instance methods actually work.

Recap

Recap

 6 different, very elegant solutions to parts of
our versioning problems.

 Neat code – check it out yourself!
 No distributed versioning, no branching.

What not to version?

 It is tempting to just annotate every model
class with “acts_subversive”, but...

 User rights?
– Should the user be able to “turn back time” and

read what he once could read?
 Big blobs?

– Spacewise, it all adds up...
– ...but are updated rarely?

By the way...

 ...I'm doing a “showdiff” plugin:
 http://show-diffs.rubyforge.org/
 Not there yet, but use it in the future :-)

Thanks!

 Check out the existing plug-ins.
 Do your own plug-ins – it's really simple.
 If you need a new feature, request it or do it

yourself.
 Participate!
 Be creative!

