
Versioning your object model
Ole Friis Østergaard

RubyFools 2008

Agenda

 Why do versioning?
 Walk-through of Rails plug-ins

– What do they do?
– How do you use them?
– Problems and advantages.
– Examples.

 What not to version?

Who am I?

 Ole Friis Østergaard
 Software Pilot, Trifork A/S
 Not a native English-speaker
 Professional work: .NET, Java
 Semi-professional work, spare time: Ruby
 TDD enthusiast

– ...though we'll do slide-driven development the
next hour...

Which problems do we solve?

 The user regrets pressing that “Delete project”
button.

 You want to track the changes to certain
objects.

 You need to know who changed an object, in
order to ask him why.

Our demo application

 Really simple and ugly.
 Create/read/update/delete projects and tasks.
 Let's have a quick look at it.

Walk-through of plug-ins

 Rails makes it easy to be creative when doing
plug-ins!

 Really simple pieces of code that do exciting
stuff.

 Very non-intrusive.
 Easy to use.
 Different angles on the versioning problems.

acts_as_logged

acts_as_logged

 Makes a ”shadow copy” of your normal
database entries.

 Makes it easy to comply with laws concerning
logging.

 Cannot show the history.
 Created by some of my colleages at Trifork.
 No official homepage (yet).
 Copy plug-in manually.

What to do?

Annotate with acts_as_logged

create_table :projects, :history => true do |t| ...
drop_table :projects, :history => true

How does it work?

 Whenever a model object is saved, updated,
or deleted, creates new row in the
corresponding logging table.

Data model

task_versions
* name
* description
* user
* updated_at
*create/update/delete

projects_history
* name
* description
* user
* updated_at
* create/update/delete

projects
* name
* description *

*
tasks

* name
* description *

Problems?

 No built-in functionality to read the history
items.

 New history table for each logged model
class.

However...

 Very simple solution to simple problem.

acts_as_versioned

acts_as_versioned

 Makes “shadow copies” of rows in the
database.

 Makes it possible to view these old versions.
 http://ar-versioned.rubyforge.org/
 ruby script/plugin install acts_as_versioned

What to do?

Don't access associations

Annotate with
“acts_as_versioned”

Extend tables with “version”
column, create new
{singular}_versions tables with
{singular}_id columns

How does it work?

 Whenever a model object is saved or updated,
creates new row in the corresponding version
table.

 When finding previous versions, instances of
OriginalClass::Version are returned.

Data model

task_versions
* name
* description
* version

project_versions
* name
* description
* version

projects
* name
* description
* version

*

*
tasks

* name
* description
* version

*

Problems?

 Versioning local to each object, i.e.
associations do not work on old versions.

 Adds an extra table to each of your original
tables.

 Since the old versions are given as another
class, your own logic methods
(“short_description”, “sum_of_expenses”)
will not work.

However...

 Mature plug-in, has been used “in the wild”.
 Easy to set up.
 Simple concept.
 Perfect for wikis.

acts_as_paranoid

acts_as_paranoid

 Calling destroy simply sets a “deleted_at” flag.
 Therefore, deleted objects can still be found.
 Not really a versioning plug-in, but solves part

of the problem.
 http://ar-paranoid.rubyforge.org/
 ruby script/plugin install acts_as_paranoid

What to do?

Extend tables with
“deleted_at”

Annotate with
“acts_as_paranoid”

Data model

projects
* name
* description
* deleted_at

*
tasks

* name
* description
* deleted_at

Problems?

 Not protected against updates, only deletes.
 Queries are altered by the plug-in in order to

filter result.
 Not really a versioning plug-in.

However...

 Extremely simple.
 No new tables.
 Can be used in conjunction with

acts_as_versioned.

acts_as_versioned_association

acts_as_versioned_association

 Extends the functionality of acts_as_versioned.
 Annotate model objects.
 http://livsey.org/2006/8/13/major-update-to-

acts_as_versioned_association/
 Might be cool.
 No real documentation.
 So, no details here!

Rails Undo Redo

Rails Undo Redo (rur)

 Undo/redo user actions, as known from e.g.
paint programs.

 Annotate model classes and controllers.
 http://blog.nanorails.com/rails-undo-redo
 Ruby script/plugin install

http://svn.nanorails.com/plugins/rur

What to do?

Copy 001_create_undo_records.rb from
plugins/rur/migrations here.

Annotate with
”acts_as_undoable”.

Call ”undoable_methods” in
class definition.
Wrap method contents in the
”change” method.

<p><%= undo_redo_links %></p>

In routes.rb:
map.undo 'undo', :controller => 'cont', :action => 'undo'
map.redo 'redo', :controller => 'cont', :action => 'redo'

How does it work?

 Keeps track of the model object changes
wrapped in the ”change” method.

 Serialized model objects are stored in a separate
table.

 When undoing/redoing, the serialized objects
are restored.

 Each session has its own ”undo manager”
which tracks the current user's
undoable/redoable actions.

Data model

undo_record:
* operation
* class
* data

undo_action:
* description
* undo_redirect
* redo_redirect

undo_manager

*

*

Private to the
users's session

The changes
performed
inside a
”change” chunk

Single model
object serialized

projects
* name
* description

*
tasks

* name
* description

Problems?

 The undo/redo trail is local to the users, so a
user can undo the creation of an object that
another user has later been dependent on.

 System-wide maximum size of single serialized
model objects (default 2MB).

 What happens when developing the database
schema?

 Serializes objects in the session cookie.

However...

 Easy to set up.
 Only 3 new database tables.
 User scope of undo/redo trail is not a problem

in many scenarios.
 Incredibly cool!

acts_as_logged
acts_as_versioned
acts_as_paranoid
acts_as_versioned_association
Rails Undo Redo

acts_subversive

acts_subversive

 Like acts_as_logged, but can fetch old
versions.

 Like acts_as_versioned, but works with
associations and your own logic methods.

 http://acts-subversive.rubyforge.org/
 ruby script/plugin install svn://rubyforge.org/

var/svn/acts-
subversive/tags/0.1/acts_subversive

What to do?

create_version_number_table
drop_version_number_table

create_versioned_table :projects do |t| ...
drop_versioned_table :projects

Annotate with “acts_subversive”

How does it work?

 Keeps a global, always increasing version
number that gets stamped on the shadow
copies.

 Only makes shadow copies of the updated
objects, not the objects they reference (unless,
of course, they have been updated too).

 When traversing associations, keeps the version
number from the first find_version call.

 Complex SQL for finding associated objects.

Data model

task_versions
* name
* description
* deleted

project_versions
* name
* description
* deleted

projects
* name
* description *

*tasks
* name
* description *

version_numbers
* created_at
* user

*

*

Problems?

 has_and_belongs_to_many unsupported.
 Inheritance unsupported.
 (n+1) new tables when versioning n classes.

However...

 Traversing associations back in time actually
does work.

 Your own instance methods actually work.

Recap

Recap

 6 different, very elegant solutions to parts of
our versioning problems.

 Neat code – check it out yourself!
 No distributed versioning, no branching.

What not to version?

 It is tempting to just annotate every model
class with “acts_subversive”, but...

 User rights?
– Should the user be able to “turn back time” and

read what he once could read?
 Big blobs?

– Spacewise, it all adds up...
– ...but are updated rarely?

By the way...

 ...I'm doing a “showdiff” plugin:
 http://show-diffs.rubyforge.org/
 Not there yet, but use it in the future :-)

Thanks!

 Check out the existing plug-ins.
 Do your own plug-ins – it's really simple.
 If you need a new feature, request it or do it

yourself.
 Participate!
 Be creative!

