
Ruby On Rails
Security

RubyFools Copenhagen, 2008 1

Heiko Webers
42@rorsecurity.info

Heiko Webers

Ruby On Rails Security Project:
www.RoRsecurity.info

E-Book „Ruby On Rails Security“
Ruby On Rails Security Audits

RubyFools Copenhagen, 2008 2

Software company

Attack trends
Cracker‘s motivation: Make money, it’s a
multi-billion dollar business
Recently: Attacks on trusted news or
sports sites

Break into the server: Apache, cPanel, CMS

RubyFools Copenhagen, 2008 3

Break into the server: Apache, cPanel, CMS
holes
Advertisement with malware
Inject specific exploits or entire attack
frameworks: MPack, 500-1,000$, available in
the Russian underground, guaranteed 40-
50% success rate

Here: Security of the (upper) application

Injection

The wrong way
Directly use external input

The right way
Consider external input malicious, until proven

RubyFools Copenhagen, 2008 4

Consider external input malicious, until proven
otherwise
Sanitize or (preferably) escape it according to
the context it‘s being used in

Injection - Contexts

SQL – remember SQLi in find_by_sql

SGML (HTML, XML, RSS…) – Escape
against XSS, SafeErb plug-in
JavaScript – Escape possible code in a

RubyFools Copenhagen, 2008 5

JavaScript – Escape possible code in a
RJS context
escape_javascript()

Injection - Contexts

CSS – This is how the Samy worm
brought down MySpace
<div id=mycode style="BACKGROUND: url('javascript:
eval(document.all.mycode.expr)')" expr="..." />

RubyFools Copenhagen, 2008 6

Command line parameter: No | or ;
allowed, use system() instead of `command`

`ls #{dir}` # dir #= "whatever | rm *"

Injection - Contexts

Textile – Definitely sanitize the result with
Rails’ sanitize()

!bunny.gif(Bunny" onclick="alert(1))!

RubyFools Copenhagen, 2008 7

<p><img src="bunny.gif" title="Bunny"
onclick=" alert(1) " alt="Bunny"
onclick=" alert(1) " /></p>

Whitelists vs. Blacklists

Use before_filter :only instead of :except

Attr_accessible instead of attr_protected

Against XSS: Allow instead of
removing <script>

RubyFools Copenhagen, 2008 8

removing <script>

Don’t try to “correct” user input by
blacklists:

"<sc <script> ript>".gsub("<script>", "")

But reject malformed input

Cross-Site Reference Forgery
(CSRF)

Browser sends domain cookie for every request

© SecureNet

RubyFools Copenhagen, 2008 9

Browser sends domain cookie for every request
to that domain
Client is logged in, authentication information in
the cookie
Victim clicks a link or views a page with a special
image:

He doesn‘t even notice the attack

CSRF in Rails

The wrong way
GET /project/1/destroy

The right way
GET /project/1/show

POST /project/1/destroy

RubyFools Copenhagen, 2008 10

POST /project/1/destroy

verify :method => :post, :only => [:destroy]

CSRF & POST
<a href=" http://www.harmless.com/ " onclick="var f =

document.createElement (' form '); f.style.display =
'none'; this.parentNode.appendChild(f); f.method =
' POST'; f.action =
' http://www.example.com/account/destroy ';
f.submit();return false;"> To the survey

RubyFools Copenhagen, 2008 11

<img src=" http://www.harmless.com/img " width="400"
height="400" onmouseover="..." />

CSRF in Rails

The right way
protect_from_forgery :secret => "very_long_secret"

Includes a security token in non-GET
requests, automatically generated in

RubyFools Copenhagen, 2008 12

requests, automatically generated in
form_for() and others

<input name="authenticity_token" type="hidden"
value="3a1e11299eff1fa5cbc724ca32978448098af0" />

Administration Interface

The wrong way
Vulnerable to XSS (steal a privileged cookie)
Vulnerable to CSRF

The same cookies used for the application

RubyFools Copenhagen, 2008 13

The same cookies used for the application
and the admin interface

Administration Interface

The right way
Take security even more serious (especially
XSS & CSRF)
Take precautions for the worst case:
Someone else takes control of the

RubyFools Copenhagen, 2008 14

Someone else takes control of the
administration interface
Require to log in to the interface despite of a
valid session, might even be special admin
login credentials
Introduce user roles: Different permissions for
different admins

Administration Interface

The right way
Put it to admin.example.com instead of
www.example.com/ admin: A (stolen admin)
cookie from www.example.com doesn‘t work
on admin.example.com

RubyFools Copenhagen, 2008 15

on admin.example.com
Check the remote IP: Administration allowed
from a certain IP (check request.remote_ip)

Session Fixation

Instead of stealing a cookie, an attacker fixes a user‘s
session identifier known to him

RubyFools Copenhagen, 2008 16

©acros

Session Fixation

Change the victim‘s cookie, for example
with HTML/JS:
document.cookie="_session_id=16d5b78abb28e3d6206b6
0f22a03c8d9";

The wrong way

RubyFools Copenhagen, 2008 17

The wrong way
Vulnerable to XSS (the most obvious way to
fixate sessions)
Allow users to log in with the same session ID
for years

Session Fixation

The right way
If the application is non-public: Turn off
cookies for the public parts, so an attacker
may not obtain a valid session ID
Issue a new session ID after a succesful login

RubyFools Copenhagen, 2008 18

Issue a new session ID after a succesful login
class SessionsController < ApplicationController

def create

reset_session

…

end

end

Session Fixation

The right way
Expire sessions, frequency based on how
critical the application is
An attacker may write an automated script to
keep a session alive: Check the session‘s

RubyFools Copenhagen, 2008 19

keep a session alive: Check the session‘s
created_at, as well (for ActiveRecordStore)

Login

The wrong way
Not updating plug-ins (e.g.
restful_authentication)

The right way

RubyFools Copenhagen, 2008 20

Check for updates: There was a security hole
in it, you could log in without login credentials
GET /activate?id=

User.find_by_activation_code(params[:id])
SELECT * FROM users WHERE (users.`activation_code` IS NULL)
LIMIT 1

See http://www.rorsecurity.info/2007/10/28/restful_authentication-login-
security/

User Management

The wrong way
Make changing password and e-mail address
easy

The right way

RubyFools Copenhagen, 2008 21

Make it harder to seize an account
Require to enter the old password when
changing
Or the answer to a security question

User Management

The wrong way
Specific error messages enable username
enumeration (for login and “send-forgotten-
password” pages)

The right way

RubyFools Copenhagen, 2008 22

The right way
Armed with a list of usernames and a
dictionary for the passwords, a bot might
brute-force accounts
First step: Possibly disable an account or
require to enter a CAPTCHA after a certain
amount of failed logins

CookieStore

What you store in the session can be seen
by the client
<base64 encoded session>-<digest>

The wrong way
Store secrets, more than 4K of data, entire

RubyFools Copenhagen, 2008 23

Store secrets, more than 4K of data, entire
objects
Use a trivial secret

config.action_controller.session = {

:secret => ‘trivial’

}

CookieStore

The right way
Ok if you store a user_id and flash message
only
Make the secret at least 30 characters long

RubyFools Copenhagen, 2008 24

config.action_controller.session = {

:session_key => ‘_app_session’,

:secret => ‘0x0dkfj3927dkc7djdh36rkckdfzsg’

}

CookieStore

Be aware of replay attacks
1. User receives credits, stored in his session
2. User buys something
3. User gets his new, lower credits stored in his

RubyFools Copenhagen, 2008 25

session
4. Cracker takes his saved cookie from step #1

and pastes it back in his browser’s cookie.
Now he’s gotten his credits back
Normally solved using a nonce, but that‘s
very hard for multiple app servers
(mongrels)

Files

The wrong way
send_file '/var/www/uploads/' + params[:filename]

GET /download?filename=../../../etc/passwd

PUT /upload?filename=../../../etc/passwd

The right way

RubyFools Copenhagen, 2008 26

The right way
Store filenames in the DB, name the files after
the record ID, just as the attachment_fu plug-
in does
Verify the downloaded file to be in the correct
directory
raise if DOWNLOAD_DIR =!

File.dirname(filename)

Files

The wrong way
Store file uploads in Rails‘ public directory
Upload: /public/uploads/file.fcgi

The right way

RubyFools Copenhagen, 2008 27

The right way
Do not store it in Apache's DocumentRoot
directory tree

Hate CAPTCHAS?

Say Hello to negative CAPTCHAs
Don‘t ask the user to proof he‘s human, but
reveal that the spam/login bot is a bot
Include a honeypot field that is hidden from
the user by CSS

RubyFools Copenhagen, 2008 28

the user by CSS
If this field contains any text, it must be a bot
Or make it more sophisticated

http://nedbatchelder.com/text/stopbots.html

Thanks

RubyFools Copenhagen, 2008 29

Thanks

