
Meta-meta-programming
Dr Nic Williams
drnicwilliams.com

Boring definition

“Program that manipulates the real world”

Programming

Image: http://www.kodak.com/US/images/en/corp/1000nerds/lund/nerdGirl.jpg

Programming with Bash
$ cat program
#!/bin/bash
echo 1
echo 2
echo 3
echo 4
echo 5
$ program
1
2
3
4
5

consider a silly bash script that prints 5 numbers. Its silly, but its a program.

Less boring definition

“Program that manipulates other programs”

Meta-programming

“Program that manipulates the real world”

Programming

Metaprogramming with
Bash

#!/bin/bash
echo '#!/bin/bash' >program
for ((I=1; I<=5; I++)) do
 echo "echo $I" >>program
done
chmod +x program

http://en.wikipedia.org/wiki/Metaprogramming

On the left is another bash script called “metaprogram”.
On the right we execute the script, and it creates a new text file called program. Which is the
program we ran 2 minutes ago.

This might not look like meta-programming, but its my presentation so I make up the definitions.
The first program manipulated or created the second program.

http://en.wikipedia.org/wiki/Metaprogramming
http://en.wikipedia.org/wiki/Metaprogramming

Metaprogramming with
Bash

#!/bin/bash
echo '#!/bin/bash' >program
for ((I=1; I<=5; I++)) do
 echo "echo $I" >>program
done
chmod +x program

$ metaprogram
$ cat program
#!/bin/bash
echo 1
echo 2
echo 3
echo 4
echo 5
$ program
1
2
3
4
5

http://en.wikipedia.org/wiki/Metaprogramming

On the left is another bash script called “metaprogram”.
On the right we execute the script, and it creates a new text file called program. Which is the
program we ran 2 minutes ago.

This might not look like meta-programming, but its my presentation so I make up the definitions.
The first program manipulated or created the second program.

http://en.wikipedia.org/wiki/Metaprogramming
http://en.wikipedia.org/wiki/Metaprogramming

Generate Ruby with Ruby

$ script/generate model Person
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/person.rb
 create test/unit/person_test.rb
 create test/fixtures/people.yml
 create db/migrate
 create db/migrate/001_create_people.rb

You are doing meta-programming when you use a code generator. When you’re developing Rails
apps or Merb apps or RubyGems you can use code generators.

Generate Ruby with IDE

TextMate’s Rails bundle
TAB autocompletion gives...
hm # =>
has_many :objects, :class_name => "Objects",
 :foreign_key => "class_name_id"

renp # =>
redirect_to(parent_child_path(@parent, @child))

Your text editor can provide meta-programming tools. Its a program that manipulates your
program. If I use TextMate, and expand one of the many delicious Rails snippets from the very sexy
new Rails bundle for TextMate, then I’m doing meta-programming.

peepcode.com

peepcode.com

 ^^ blatant advert ^^

Generate Ruby within Ruby
class Person
end

Person.module_eval <<-EOS
 def to_s
 "I'm a person, dammit!"
 end
EOS

Person.new.to_s # => "I'm a person, dammit!"

But the concept of meta-programming that most people think about is internal meta-programming.
Where a programming language has its own tools to modify an application whilst the application is
already executing.
On this slide, we’re adding a to_s method to a preexisting class Person.

Two types of
meta-programming

• Generation

• Reflection

So I like to think there are generally two types of meta-programming: external generation or
modification of code, and internal, runtime modification of code. The later is called Reflection.

Reflection
1. Programming language entities are first class objects.

class Person
end

Person.new.class # => Person
Person.class # => Class
Person.class.class # => Class
Person.methods # => ["to_s", "nil?", "is_a?", ...]

Reflection
2. Modifying these objects modifies the program.

class Person
 def self.simple_const(name)
 self.send :define_method, name.to_sym do
 name
 end
 end
end

Person.simple_const "foo"
Person.instance_methods.include?("foo") # => true
Person.new.foo # => "foo"
Person.foo # =>
~> undefined method `foo' for Person:Class (NoMethodError)

How many people have read Why’s Poignant Guide to Ruby?

How many people have read Chapter 6 which talks about Meta-Programming?
How many people wrote out the code for Dwemthy’s Array, with the monster classes, and the bomb,
sword and the less-than-dangerous lettuce as weapons?
How many people continued on and modified the app cause it was so much fun?

chapter 6
How many people have read Chapter 6 which talks about Meta-Programming?
How many people wrote out the code for Dwemthy’s Array, with the monster classes, and the bomb,
sword and the less-than-dangerous lettuce as weapons?
How many people continued on and modified the app cause it was so much fun?

Wacky definition

“Program that manipulates other programs”

Meta-programming

“Program that manipulates the real world”

Programming

“Program that manipulates other meta-programs”

Meta-meta-programming

What I want to talk about is actually meta-meta-programming.The breadth of scope of what this
statement can encapsulate is well beyond my attention span. For some people it means adding
hooks or wrappers around methods. For others it means the ability to create or extend language
tools that you use to do normal meta-programming.
But there is no line to be drawn in the sand about what part of the Ruby API is meta-programming
and what is meta-meta-programming. I give the word to you instead to open up your mind to how
far your can fart-arse about when you are supposed to be doing serious work.

Human learning

Learn how to learn new things.

Meta-programming

Learn new things.

Learn how to learn how to learn new things.

Meta-meta-programming

Programming

Consider a human. We know how to learn new things. Running that program is when you “do”
something.
But in order to do that, we’re already programmed how to learn new things. That is, we learned how
to learn new things.
But how did that happen? Can we change it? Fortunately, humans can learn how to change the way
they learn. That is, they can learn how to learn how to learn new things.

Human learning

Learn how to learn new things.

Meta-programming

Learn new things.

Learn how to learn how to learn new things.

Meta-meta-programming

Programming

Learn how to learn how to learn how to learn how to...

Bachelor of Arts/Humanities degree

But becareful of following this to infinity. You’ll spend a lot of time thing thinking and never get any
real work done.

Arguably, productivity is at the top of this list, and wasting your parents money at university is at
the bottom of the list.

You can’t teach
an old dog new

tricks

http://www.curtispublishing.com/images/NonRockwell/9310711.jpg

But, you
can teach

an old man
new tricks

Some of us got married, and then we learnt all sorts of new things. Like mowing the lawn regularly.
http://pro.corbis.com/images/42-15509965.jpg?size=572&uid=%7B89D13686-7574-4513-AA26-819FEC5A7BC1%7D

You can teach an old
Ruby program new tricks

Ruby gives your programs the capacity not just to learn how to learn how to be programmed.

Examples of meta-meta-
programming

• Redefine define_method as reverse_method

• Create a new class syntax

• Generate new generators

Let’s explore a couple examples of meta-meta-programming to help break down some barriers of
what you think you can or cannot do with Ruby.

define_method

class Foo
 define_method :print_var do |variable|
 puts variable
 end
end

Foo.new.print_var "Normal method"
>> Normal method

Ruby has a meta-programming helper method ‘define_method’ to allow you to create new methods.

class Module
 def reverse_method(name, &method)
 define_method(name.to_s.reverse.to_sym, &method)
 end
end

class Foo
 reverse_method :print_var do |variable|
 puts variable
 end
end

Foo.new.rav_tnirp "Wacky method name!"
>> Wacky method name!

reverse_method

Let’s teach Ruby about a new way to create methods - with the method name in reverse.
Since we manipulated our program to give it a new meta-programming helper, then this is meta-
meta-programming.

Create new class syntax
http://blog.jayfields.com/2008/01/write-only-ruby.html
C "Foo" do
 a :first_name, :last_name, :favorite_color
 i Enumerable

 init { |*args| s.first_name, s.last_name = *args }

 d.full_name do
 "#{first_name} #{last_name}"
 end
end

person = Foo.new("Jay", "Fields")
puts person.full_name
>> Jay Fields

Here’s an idea I first saw from Jay Fields. Instead of the unnecessary verbose Ruby syntax for
creating classes and methods, we replace each with a shorter word. Class = C, accessor = a,
constructor = init, define_method = d

This is meta-meta-programming - you are teaching Ruby how you want to do your meta-
programming.

You are limited by the Ruby parser of course. You cannot change the Ruby syntax with Ruby MRI.
But perhaps with Rubinius our power to reprogram Ruby will be limitless?

Generate new generators

meta_gem$ ruby script/generate component_generator onepageapp merb
 create merb_generators/onepageapp/templates
 create merb_generators/onepageapp/onepageapp_generator.rb
 create test/test_ onepageapp_generator.rb
 create test/test_generator_helper.rb
 create merb_generators/onepageapp/USAGE

If a code generator is an example of meta-programming, then creating a new code generator is
meta-meta-programming.

RubiGen

There is a project called RubiGen which allows you to use generators like you have in Rails in other
frameworks like Merb.

How many generator
generators?

meta_gem$ ruby script/generate
...
Installed Generators
 Rubygems:

application_generator,
component_generator, ...

When you are writing a RubyGem for a project, there are two generators that you can use to create
new generators. application_generator is used for creating the scaffolding for an entirely new
application, like the “rails” command. component_generator creates a generator that is used within
a framework application, like the “model” or “scaffold” generators within Rails.

If you are creating new frameworks, you can use these two generators to give your new users
scaffolding generators to help them learn about your framework. They save you having to create
generators from scratch.

Our comment model
class Comment < ActiveRecord::Base
 belongs_to :commentable, :polymorphic => true
end

A model using Comment
class Timesheet < ActiveRecord::Base
 has_many :comments, :as => :commentable
end

And another
class ExpenseReport < ActiveRecord::Base
 has_many :comments, :as => :commentable
end

Using macros...

Example from “The Rails Way”

The belongs_to and has_many macros use meta-programming to work. When executed they create
new methods on the class.

They look like ordinary language constructs - which is a beautiful by-product of its syntax
flexibility. Parentheses are optional.

But they are method calls upon the class.

module Commentable
 def self.included(base)
 base.class_eval do
 has_many :comments, :as => :commentable
 end
 end
end

A model using Comment
class Timesheet < ActiveRecord::Base
 include Commentable
end

And another
class ExpenseReport < ActiveRecord::Base
 include Commentable
end

...reflectively!

Example from “The Rails Way”

Here we’re invoking the meta-programming filled macro “has_many” programmatically via the
#include call.
Its arguably meta-meta-programming, but its something we do all the time in plugins/libraries.

Point to make - the meta-meta-code in self.included is ugly; but the application code is concise and
meaningful. You document somewhere that “include Commentable” gives your model a #comments
association and you’re done. If you use this in all your applications - say via a plugin - it just
becomes another language construct.

How it works:
When you include a module into a class, a couple things happen.

First, all that modules methods are added to the class. In this example there aren’t any, but this is a
common use for modules to “mix-in” methods, esp since Ruby has no multiple inheritence.

Secondly, and importantly here, that module’s included method is involved, and passed the target
class.

This means the module can perform meta-programming on the class.

In this example, we execute a block of code upon the class using the class_eval call. In this example,
each class that includes the Commentable module has a comments association added to it.

DIY meta-meta-
programming

• Write new generator generators

• Write TextMate snippet generator

• Write Ruby “macros”

The reason to show you all this is to explode your mind with ideas. Write new generators or new
generator generators. For example, Merb could have its own generator generator since its
generators look different from generic RubiGen generators or Rails generators.

Learn to write TextMate snippets, or perhaps figure out how to generate or maintain snippet files
manually.

Learn how to write

How to think
like how Ruby

thinks...

Let’s use circles for objects, and squares for classes. The blue arrow shows an instantiation: an
object belonging to a class. Objects hold instance variables, and Classes hold methods. Objects
don’t hold methods.

MetaClass concept

But this is Ruby, and we know that Classes are Objects. So its a combo of a square and a circle.

But if a class is an object, then it must have a class of its own. Let’s call this the metaclass. If a class
contains instance methods for an object, then the metaclass contains the class methods for the
class.

This is not exactly how Ruby implements classes and metaclasses, but its a very clean example of
how it could be.

Classes have Classes

class Person; end

person = Person.new
person.class # => Person
Person.class # => Class
Class.class # => Class

Let’s look at some Ruby code and see if we can map it across to our diagram.

The person object has a class Person, and it seems the Person class has a class called Class. Finally,
there’s some circularity: the class of Class is itself.

So, if the instantiating class of Person is a thing called Class, then we’d expect to find class
methods there.

Where are
‘class methods’?

class Person
 def self.my_class_method; end
end

Class.instance_methods.grep(/my_class_method/) # => []
Class.methods.grep(/my_class_method/) # => []

Person.methods.grep(/my_class_method/)
=> ["my_class_method"]
Person.instance_methods.grep(/my_class_method/) # => []
Person.metaclass.instance_methods.grep(/my_class_method/)
=> ["my_class_method"]

Person.class == Person.metaclass # => false

At the top, we define a class or static method on the Person class. But when we investigate the
methods on Class, it is nowhere to be found?!

Yet, it obviously does exist as a method on the Person class, though its a class method not an
instance method. So, where is it defined if its not in the class called Class?

There is actually something else, something we’ll again call the metaclass. But this metaclass,
whatever it is, is different from the Person class’s own class.

Let’s replace the words Class and MetaClass on our old diagram with actual Ruby class names:
Person and Class, and we’ll assume that an instance of the Person class is in a variable called
person.

On the RHS we’re showing something new: the metaclass object introduced a moment ago. As you
can see, every object in Ruby world can have its own metaclass, also called a singleton or eigenclass.

metaclass accessor

class Object
 def metaclass
 class << self
 self
 end
 end
end

found in gem 'metaid' by _why

Now, the metaclass method doesn’t exist in standard Ruby. So, here’s its implementation; and its
packaged within a RubyGem called ‘metaid’ by whytheluckystiff.

You can see its implementation is to use the class-arrow-arrow-self syntax you’ve probably seen
before or even used.

In fact, the single purpose of this Ruby syntax is to expose an object’s metaclass and let you do stuff
to it. Here, we’re just returning it as a result of the method call. But we could define methods on it,
invoke methods on it, etc.

Everything has a
MetaClass

Person.metaclass # => #<Class:Person>
Person.metaclass.superclass # => #<Class:Class>
Class.metaclass # => #<Class:Class>
Person.new.metaclass # => #<Class:#<Person:0x1b224>>

If we print out our metaclasses, we see they have unique names, based on their underlying object.

So let’s build up the complete picture of classes and metaclasses and their relationships.

First, let’s add in the root Object class that is the superclass of nearly every class. Here, the red
arrow shows a subclass relationship: Person subclasses Object. Object itself has no superclass, so
there are no red arrows coming from it.

But in our picture we have 4 other classes: Class and the 3 metaclasses.

class Person
 attr_accessor :name
 def self.all_names; end
end

When we add methods and class methods to our Person class we can now see where they are
stored. It is the Person’s metaclass that stores the class method, not the Class class.

Here I’ve added in some more blue arrows which shows that all classes are instances of Class. I’m
missing two blue arrows cause it makes the picture look ugly. But there should be blue arrows from
Class to all the other squares.

Class.metaclass ==
Person.metaclass.superclass

Person.metaclass ==
person.metaclass.superclass

Metaclass’s superclasses

It turns out that whilst a Person object is an instance of the Person class, the metaclasses of the two
things are superclasses of each other.

That is, the metaclasses on the right have red arrows between them matching the blue instantiation
arrows of their owner objects.

Class.metaclass # => #<Class:Class>
Class.metaclass.superclass # => #<Class:Class>

At the top of the metaclass tree, the Class Class is its own superclass.

Class.superclass # => Module
Module.superclass # => Object
Object.superclass # => nil

Class superclass
Unlike the metaclasses, the superclass of Class is Module, which superclasses Object.

Class.class # => Class

And finally, like every other class in Ruby, the class called Class is its own Class, thus giving us
more meta-circularity.

And we’re done! Stick that up on your wall at work and star at it like those old Magic Eye pictures.
Perhaps if you look long enough you’ll see an Eagle or Where’s Wally.

The final diagram

Meta-circularity
class Class
 def who_am_i; self; end

 def self.meta_who_am_i; self; end
end

Class.instance_methods.grep(/who_am_i/)
=> ["who_am_i"]
Class.methods.grep(/who_am_i/)
=> ["meta_who_am_i", "who_am_i"]

So let’s explore what happens at the top of that picture, where Class is an superclass of itself, and
Metaclass is an superclass of itself.

class Class
 def who_am_i; self; end

 def self.meta_who_am_i; self; end
end

Like the example earlier, here is a class with an instance method and a class method. Except, the
class is at the point of meta-circularity - at the top. So the who_am_i instance method is actually
stored on Class, because there is nowhere else to store it. But the class method “meta_who_am_i” is
still stored on its metaclas.

Meta-meta-
programming

It’s just for
programmers, but it’s
for all programmers

http://www.celebbinge.com/wp-content/uploads/2007/08/jessica-simpson.jpg

