Modeling Process

Rich Hickey

Which are more
fundamental?

® Messages, classes, encapsulation,
inheritance, dispatch...

® [ime, value, identity, state,
persistence, transience, place,
perception, visibility, memory,
process...

Coming to Terms

Value

® An immutable
magnitude, quantity,
number... or immutable
composite thereof

|ldentity

® A putative entity we
associate with a series of
causally related values
(states) over time

State

® Value of an identity at a
moment in time

Time

® Relative before/after
ordering of causal values

A Real Problem

Place

® “open space”
® Relative

® |nclude time coordinate, and process
results happen in new places

!

What Would a Program Do

Not this

ALy
R VT Ve
e S Rt

2K

iR

=

.
, e

Are places in charge!

What do we see!

3ZKU1 IZKUT 3IZKUT 3ZKU1
D-cache D-cache D-cache D-cache

O5ORL2T TJS6KLZ JSeR1? USeRtY

Cache Cache Cache Cache

frontal eye fielC

e \ 3
D D s & R il b
. . D \
\ N p . \
N N A

auditory association

Perception

Perceive - “take entirely”

Sensory systems only ever perceive the
past

Discretizing, snapshots

Most useful when coupled with memory
Fidelity matters

Visible == “can be perceived”

® not merely ‘reachable via reference’

Memory

® “mindful, remembering”

® |f our mental memory behaved the way we
use computer memory, we'd be ill

® |n the mind we talk about forming
memories

® New memories about the same identities
don’t replace the old

® Fidelity matters

® Stability matters (persistence)

Program Memory

® Sometimes we use computer memory like
brain memory

® Sometimes like perception

® Sometimes (commonly, most of the time)
like places

Using the same
memory for everything

® Destroys the past
® Corrupts remembering
® |nterferes with perception

® We must use memory for all three things,
but not necessarily the same memory

Process

Process

® “go forward, advance”
® They're not called “food calculators™
® Potentially richer than this

® Manipulate contents of place(s)

® May involve multiple forces

Process across multiple
places

Process with multiple
forces/ participants

\ f({l> Ir’l(

YL

—_llllllll'l-l'

T_,l /’/YI\H
-.m

Philosophy

® Things don't change in place

® Becomes obvious once you incorporate
time as a dimension

® Place includes time

® The future is a (multi-force) function of the
past

® Co-located entities can observe each other
without cooperation

® Coordination is desirable in local context

EPOChaI Time MOdel Process events

(pure functions™)

States

ldentity / + \ (immutable values)
(succession of | R
states) y Yo C
S/ S A

Y %

Observers/perception/memory

Persistent

® “lasting or enduring tenaciously”
® Root:"to stand firm permanently”

® When applied to data structures
® A) safe on the disk (not today’s topic)
® B) immutable++

® Great fit for perceptions and memories

ldentity Constructs as
Gatekeepers of Time

® Responsible for coherent successive states
® Multiple semantics possible
® And providing proper values to observers

® Support coordination (multiple places) and
process functions supplied from multiple
threads of control (multiple participants)

Functional Model

lllllllllll

_— -
-—
- -
-—
—_——
-_— -
. —
-—
-—
_—-— .
-—

CAS as Time Construct

wN ;,> VN1 ° °
T

/ T

\ SN Y,

-
‘
\/ ,

(swap! an-atom f args)

AtomicReference

|:1 timeline/identity
® Atomic state succession

(f vN args) becomes vN+ | ® Point-in-time value
perception g
- can automate spin g

23 N 4

Agents as Time Construct
HOIOIOI0ION

VN+1

>

()
(send aref f args) N N 4
returns immediately —
- PR J
queue enforces serialization O* \‘<
(f vN args) becomes vN+I ® |:| timeline/identity

. ® Atomic state succession
happens asynchronously in

thread pool thread e Point-in-time value ﬁ

o4 perception

STM as [ime Construct

But...

® What if my logical unit of work involves a
million steps!?

® Creating a million interim values via pure
function invocation is a waste

® “I'm going back to my cubbyholes!”

Transient

® “not lasting, enduring, or permanent;
transitory”

® Root:"go across”

® When applied to data structures:
® Not persistent!
® FEach operation returns the next transient
® Can’t presume modify-in-place
® Doesn’t preclude it either

® No identity

Transient-Based Model

Make Transient
(in new memory)
can be O(1)

Make Persistent
(immutable)

r—-——>=--7 I QP - T—- I :
| . ‘ ‘
: aTransient '.__> : aTransient L‘ v3 \ :

| | | '
e L J .

What about those
Procs?

® Might modify their arguments

® |sn’t this just icky mutable side-effecting
coding again!

® hard to test

® difficult to reason about

e No!

Proc

Function of transient to transient

Like pure function, can’t effect the world nor be
effected by it

Only used in a context where transient cannot
leak

Can always be sandwiched in value->transient
and transient->value functions and become ‘pure’

-— e w—
-— — — o
- -~

The sweet, creamy,
efficient middle of pure
functions

Transient/Proc Model

® Prototype implementation - ‘pods’

® Can support multiple participants, in multiple
threads

® and coordination of multiple identities/places
® cven ad hoc grouping

® But not arbitrary composition/nesting
® Same limitation as locks, but detectable

® Agents could support as well

Summary

® We need to talk about these things
® Better, more precise language and terms
® | anguage and library support

® Examine high-level abstractions and
constructs in terms of these fundamental
Issues

Thanks for listening!

http://clojure.org

http://www.clojure.org
http://www.clojure.org

