
Modeling Process

Rich Hickey



Which are more 
fundamental?

•Messages, classes, encapsulation, 
inheritance, dispatch...

•Time, value, identity, state, 
persistence, transience, place, 
perception, visibility, memory, 
process...



Coming to Terms
Value

• An immutable 
magnitude, quantity, 
number... or immutable 
composite thereof

Identity

• A putative entity we 
associate with a series of 
causally related values 
(states) over time

State

• Value of an identity at a 
moment in time

Time

• Relative before/after 
ordering of causal values



A Real Problem



Place
• “open space”

• Relative

• Include time coordinate, and process 
results happen in new places



What Would a Program Do?

Not this!



Are places in charge?



What do we see?



Our Problem

Memory
Perception

Reality

Logic



Perception
• Perceive - “take entirely”

• Sensory systems only ever perceive the 
past

• Discretizing, snapshots

• Most useful when coupled with memory

• Fidelity matters

• Visible == “can be perceived”

• not merely ‘reachable via reference’



Memory
• “mindful, remembering”

• If our mental memory behaved the way we 
use computer memory, we’d be ill

• In the mind we talk about forming 
memories

• New memories about the same identities 
don’t replace the old

• Fidelity matters

• Stability matters (persistence)



Program Memory

• Sometimes we use computer memory like 
brain memory

• Sometimes like perception

• Sometimes (commonly, most of the time) 
like places



Using the same 
memory for everything

• Destroys the past

• Corrupts remembering

• Interferes with perception

• We must use memory for all three things, 
but not necessarily the same memory



Process



Process

• “go forward, advance”

• They’re not called “food calculators”

• Potentially richer than this

• Manipulate contents of place(s)

• May involve multiple forces



Process across multiple 
places



Process with multiple 
forces/participants



Philosophy
• Things don't change in place

• Becomes obvious once you incorporate 
time as a dimension

• Place includes time

• The future is a (multi-force) function of the 
past

• Co-located entities can observe each other 
without cooperation

• Coordination is desirable in local context



� �

�

� �

�

� �

�

� �

Process events 
(pure functions*)

Observers/perception/memory

States 
(immutable values)Identity 

(succession of 
states)

Epochal Time Model



Persistent

• “lasting or enduring tenaciously”

• Root: “to stand firm permanently”

• When applied to data structures

• A) safe on the disk (not today’s topic)

• B) immutable++

• Great fit for perceptions and memories



Identity Constructs as 
Gatekeepers of Time

• Responsible for coherent successive states

• Multiple semantics possible

• And providing proper values to observers

• Support coordination (multiple places) and 
process functions supplied from multiple 
threads of control (multiple participants)



v2

Fn + 
args

v3

Functional Model



23

• 1:1 timeline/identity

• Atomic state succession

• Point-in-time value 
perception

F

v2

F

v3

F

v4

vN+1

vNs

vN

AtomicReference

(swap! an-atom f args)

(f vN args) becomes vN+1

- can automate spin

CAS as Time Construct



24

• 1:1 timeline/identity

• Atomic state succession

• Point-in-time value 
perception

(send aref f args)
returns immediately

queue enforces serialization

(f vN args) becomes vN+1

happens asynchronously in 
thread pool thread

Agents as Time Construct
F

vN+1

vNs

vN

F FFFF



F

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

F

F

F

F

F

F

F F F

F

F

Transactions

STM as Time Construct

25



But...

• What if my logical unit of work involves a 
million steps?

• Creating a million interim values via pure 
function invocation is a waste

• “I’m going back to my cubbyholes!”



Transient
• “not lasting, enduring, or permanent; 

transitory”

• Root: “go across”

• When applied to data structures:

• Not persistent!

• Each operation returns the next transient

• Can’t presume modify-in-place

• Doesn’t preclude it either

• No identity



Transient-Based Model

v2

Proc 
+ args

v3aTransient

Proc 
+ args

aTransientaTransient

Make Transient
(in new memory)

can be O(1)

Make Persistent 
(immutable)
can be O(1)



What about those 
Procs?

• Might modify their arguments

• Isn’t this just icky mutable side-effecting 
coding again?

• hard to test

• difficult to reason about

• No!



Proc
• Function of transient to transient

• Like pure function, can’t effect the world nor be 
effected by it

• Only used in a context where transient cannot 
leak

• Can always be sandwiched in value->transient 
and transient->value functions and become ‘pure’

Pure Function

ProcV->T T->Vvalue value



The sweet, creamy, 
efficient middle of pure 

functions



Transient/Proc Model
• Prototype implementation - ‘pods’

• Can support multiple participants, in multiple 
threads

• and coordination of multiple identities/places

• even ad hoc grouping

• But not arbitrary composition/nesting

• Same limitation as locks, but detectable

• Agents could support as well



Summary

• We need to talk about these things

• Better, more precise language and terms

• Language and library support

• Examine high-level abstractions and 
constructs in terms of these fundamental 
issues



Thanks for listening!

http://clojure.org

http://www.clojure.org
http://www.clojure.org

