
GOTO 2010

REAL WORLD WEB SCALE
INFORMATION RETRIEVAL

fturg Mike Male

Wednesday, October 6, 2010

GOTO 2010

A NARRATIVE
Conflict

Consistency and
availability, fault tolerance
and redundancy. Oh my!

Rising Action
A spatial database!?
Secondary conflicts,

obstacles, and frustrations!Exposition
It all started with an
idea... followed by an

even better idea. Climax
A turning point that

marks a change in the
protagonist’s affairs.

Conclusion..?
Sequel likely!

Wednesday, October 6, 2010

GOTO 2010

THE LEAD

MIKE MALONE
INFRASTRUCTURE ENGINEER
mike@simplegeo.com
@mjmalone

For the last 10 months I’ve been working on a
web-scale spatial database that lives at the core
of SimpleGeo’s infrastructure.

Wednesday, October 6, 2010

SIMPLEGEO

We originally began as a mobile
gaming startup, but quickly

discovered that the location services
and infrastructure needed to support

our ideas didn’t exist. So we took
matters into our own hands and

began building it ourselves.

Mt Gaig
 CEO & co-founder

Joe Stump
 CTO & co-founder

GOTO 2010

Wednesday, October 6, 2010

GOTO 2010

My goal is to summarize the last ten months of
R&D work at SimpleGeo in an hour.

AS PROTAGONIST

IN REALITY...
I’m leaving out lots of the details. Some of them are interesting.
And that’s sad.

Wednesday, October 6, 2010

GOTO 2010

We like all of our data and want
to keep it around. Therefore,
our database must be:

REQUIREMENTS

•HIGHLY AVAILABLE
•FAULT TOLERANT
•DECENTRALIZED
•HORIZONTALLY SCALABLE
•OPERATIONALLY SIMPLE

Wednesday, October 6, 2010

GOTO 2010

CANDIDATES
THE TRANSACTIONAL RELATIONAL DATABASES

They’re theoretically pure, well understood, and mostly
standardized behind a relatively clean abstraction

They provide robust contracts that make it easy to reason
about the structure and nature of the data they contain

They’re battle tested, hardened, robust, durable, etc.

OTHER STRUCTURED STORAGE OPTIONS
Plain I see you, western youths, see you tramping with the
foremost, Pioneers! O pioneers!

Wednesday, October 6, 2010

GOTO 2010

COLORADO MEN ARE WE
WE CHOSE “OTHER STRUCTURED STORAGE”

Traditional transactional databases aren’t high availability or
fault tolerant without external management

Traditional transactional databases are centralized without
external management

Traditional transactional databases can’t scale horizontally
without external management
External management of traditional transactional databases is
difficult to build, domain specific, and operationally complex

IN SHORT, THE TRADITIONAL TRANSACTIONAL RDBMS
SOLUTIONS DIDN’T MEET OUR REQUIREMENTS...

Wednesday, October 6, 2010

GOTO 2010

THEY SIMPLY CAN’T.
IF SOMEONE CLAIMS TO HAVE WRITTEN A HIGH AVAILABILITY

HORIZONTALLY SCALABLE APP ON A TRADITIONAL RDBMS, IT’S
BECAUSE THEY WROTE THEIR OWN DBMS ON TOP OF IT.

THAT’S NOT NECESSARILY A BAD THING THOUGH.

Wednesday, October 6, 2010

GOTO 2010

These terms are not formally defined - they’re a
framework, not mathematical axioms

ACID IN 30 SECONDS

ATOMICITY
Either all of a transaction’s actions are visible to another transaction, or none are

CONSISTENCY
Application-specific constraints must be met for transaction to succeed

ISOLATION
Two concurrent transactions will not see one another’s transactions while “in flight”

DURABILITY
The updates made to the database in a committed transaction will be visible to
future transactions

Wednesday, October 6, 2010

GOTO 2010

ACID is a sort-of-formal contract that makes it
easy to reason about your data, and that’s good

ACID HELPS

IT DOES SOMETHING HARD FOR YOU
With ACID, you’re guaranteed to maintain a persistent global
state as long as you’ve defined proper constraints and your
logical transactions result in a valid system state

Wednesday, October 6, 2010

GOTO 2010

Certain aspects of ACID encourage (require?)
implementors to do “bad things”

ACID HURTS

Unfortunately, ANSI SQL’s definition of isolation...
relies in subtle ways on an assumption that a locking scheme is
used for concurrency control, as opposed to an optimistic or
multi-version concurrency scheme. This implies that the
proposed semantics are ill-defined.

Joseph M. Hellerstein and Michael Stonebraker
Anatomy of a Database System

Wednesday, October 6, 2010

GOTO 2010

At PODC 2000 Eric Brewer told us there were three
desirable DB characteristics. But we can only have two.

CAP THEOREM IN 30 SECONDS

CONSISTENCY
Every node in the system contains the same data (e.g., replicas are
never out of date)

AVAILABILITY
Every request to a non-failing node in the system returns a response

PARTITION TOLERANCE
System properties (consistency and/or availability) hold even when
the system is partitioned and data is lost

Wednesday, October 6, 2010

GOTO 2010

CAP THEOREM IN 30 SECONDS

CLIENT SERVER REPLICA

Wednesday, October 6, 2010

GOTO 2010

CAP THEOREM IN 30 SECONDS

CLIENT SERVER REPLICAwre

Wednesday, October 6, 2010

GOTO 2010

CAP THEOREM IN 30 SECONDS

CLIENT SERVER REPLICAwre plice

Wednesday, October 6, 2010

GOTO 2010

CAP THEOREM IN 30 SECONDS

CLIENT SERVER REPLICAwre plice

ack

Wednesday, October 6, 2010

GOTO 2010

CAP THEOREM IN 30 SECONDS

CLIENT SERVER REPLICAwre plice

ackaept

Wednesday, October 6, 2010

GOTO 2010

CAP THEOREM IN 30 SECONDS

CLIENT SERVER REPLICAwre

ni

FAIL!

UNAVAILAB!

Wednesday, October 6, 2010

GOTO 2010

CAP THEOREM IN 30 SECONDS

CLIENT SERVER REPLICAwre

FAIL!

aept
CSTT!

Wednesday, October 6, 2010

GOTO 2010

IN A NUTSHELL
IT’S A QUESTION OF VALUES

For traditional databases CAP consistency is the holy grail: it’s
maximized at the expense of availability and partition tolerance

At scale, failures happen: when you’re doing something a million
times a second a one-in-a-million failure happens every second

We’re witnessing the birth of a new religion...
• CAP consistency is a luxury that must be sacrificed at scale in order to

maintain availability when faced with failures

But let’s not have a religious war - horses for courses

A SYSTEM IN ITS HAPPY STATE WILL BEHAVE
“CONSISTENTLY!” IT’S WHAT HAPPENS DURING
FAILURES THAT DIFFERS.

Wednesday, October 6, 2010

GOTO 2010

RISING ACTION

Wednesday, October 6, 2010

GOTO 2010

APACHE CASSANDRA
IT’S A GREAT DISTRIBUTED HASH TABLE

Gossip provides fault detection & tolerance and distributed
operations with minimal operational overhead
Random hash-based partitioning provides auto-scaling and efficient
online rebalancing
Pluggable replication for multi-datacenter replication
Tunable consistency allow us to adjust durability with the value of
data being written
As a pure peer-to-peer system operations are decentralized and the
cluster can automatically heal after failures

I LIKE SOFTWARE WITH ACADEMIC RIGOR AND I
DON’T LIKE TO RUN SOFTWARE I DON’T UNDERSTAND

Wednesday, October 6, 2010

GOTO 2010

CASSANDRA IS NOT A
SPATIAL DATABASE
DISTRIBUTED HASH TABLES INTENTIONALLY DESTROY
DATA LOCALITY (BY HASHING) IN ORDER TO ACHIEVE
GOOD BALANCE AND SCALE LINEARLY

bob

sam

alice

02^256 - 1

Wednesday, October 6, 2010

GOTO 2010

HASH TABLE:
SUPPORTED QUERIES

EXACT MATCH
RANGE

PROXIMITY
ANYTHING THAT’S NOT
EXACT MATCH

Wednesday, October 6, 2010

GOTO 2010

THE ORDER PRESERVING
PARTITIONER
CASSANDRA’S PARTITIONING STRATEGY IS
PLUGGABLE

The partitioner is responsible for mapping a key to a node

The order preserving partitioner uses the natural ordering of
the row keys for this mapping alice

bob

sam

az

Wednesday, October 6, 2010

GOTO 2010

ORDER PRESERVING PARTITIONER

BECAUSE DATA IS ARRANGED ACCORDING TO
ITS NATURAL ORDERING, YOU CAN PERFORM
RANGE QUERIES ON A SINGLE DIMENSION

EXACT MATCH
RANGE

PROXIMITY?

Wednesday, October 6, 2010

GOTO 2010

DIMENSIONALITY REDUCTION
SPACE-FILLING CURVES
SPATIAL DATA IS INHERENTLY
MULTIDIMENSIONAL...

1 2

1

2 x 2, 2

Wednesday, October 6, 2010

GOTO 2010

DIMENSIONALITY REDUCTION
SPACE-FILLING CURVES
SPATIAL DATA IS INHERENTLY
MULTIDIMENSIONAL... OR IS IT!?

1 2

43

SPOILER ALERT: IT IS

Wednesday, October 6, 2010

GOTO 2010

Z-CURVE
SECOND ITERATION

Wednesday, October 6, 2010

GOTO 2010

GEOHASH
HOW CAN SOMETHING BE WRONG
WHEN IT FEELS SO RIGHT!?

By interleaving the bits of a decimal latitude
and longitude you’re left with the equivalent of
a binary encoding of the pre-order traversal of
a tree (no joke)

By base32 encoding this binary representation
you’re left with a convenient, arbitrary-
precision representation of the coordinates
that sorts lexicographically in a single
dimension

THAT’S SO COOL!

011

Wednesday, October 6, 2010

GOTO 2010

BOUNDING BOX
E.G., MULTIDIMENSIONAL RANGE

1 2

43

Gie 2 3

Gie > 3

Gie stuff bg box!

Wednesday, October 6, 2010

GOTO 2010

Z-CURVE LOCALITY

Wednesday, October 6, 2010

GOTO 2010

Z-CURVE LOCALITY

x
x

Wednesday, October 6, 2010

GOTO 2010

Z-CURVE LOCALITY

x

x

Wednesday, October 6, 2010

GOTO 2010

BUT... TURNS OUT SPATIAL DATA IS
STILL MULTI-DIMENSIONAL
DIMENSIONALITY REDUCTION ISN’T PERFECT

Sometimes things that are far apart appear close together, and
vice versa

As a result, the client needs to be smart enough to do
• Pre-processing to compose multiple queries

• Post-processing to filter and merge results

This is a more-or-less workable situation for range queries, but
breaks down badly for k-nearest-neighbor or proximity queries

AND IT GETS WORSE WITH ADDITIONAL
DIMENSIONS

Wednesday, October 6, 2010

GOTO 2010

Z-CURVE LOCALITY

x
xo

o
o

o
o o

o

Wednesday, October 6, 2010

GOTO 2010

WORSE: TOO MUCH LOCALITY

1 2

43
SAN FRANCISCO

Wednesday, October 6, 2010

GOTO 2010

WORSE: TOO MUCH LOCALITY

1 2

43
SAN FRANCISCO

Wednesday, October 6, 2010

GOTO 2010

WORSE: TOO MUCH LOCALITY

1 2

43
SAN FRANCISCO

I’m sad.

Wednesday, October 6, 2010

GOTO 2010

WORSE: TOO MUCH LOCALITY

1 2

43
SAN FRANCISCO

I’m sad.

I’m b.

Me o.

Let’s py xbox.

Wednesday, October 6, 2010

GOTO 2010

A TURNING POINT

Wednesday, October 6, 2010

GOTO 2010

HELLO, DRAWING BOARD
AN EXTREMELY BRIEF SURVEY OF DISTRIBUTED
PEER-TO-PEER INDEXING

An overlay-dependent index works directly with nodes of the
peer-to-peer network, defining its own overlay

An over-DHT index overlays a more sophisticated data
structure on top of a peer-to-peer distributed hash table

BOTH WAYS WORK
Many of the concepts are actually isomorphic with linear
factors differentiating them... it’s like building a set out of a
dictionary
• In fact, it’s a lot like building an ordered set out of a dictionary

Wednesday, October 6, 2010

GOTO 2010

HOW ‘BOUT AN OVERLAY-
DEPENDENT GRID WITH POSTGIS’?
MIGHT WORK, BUT

The relational transaction management system (which we’d
want to change) and access methods (which we’d have to
change) are tightly coupled (necessarily?) to other parts of the
system
• Massive re-write would be necessary, most benefit gone

• This isn’t a problem that’s specific to PostGIS, but is true of traditional
relational databases in general

Could work at a higher level and treat PostGIS as a black box
• Now we’re back to implementing a peer-to-peer network with failure

recovery, fault detection, etc... and Cassandra already had all that.

• It’s probably clear by now that I think these problems are more
difficult than actually storing structured data on disk

Wednesday, October 6, 2010

GOTO 2010

DISTRIBUTED INDEXES
OVER-DHT PRIOR ART
LOTS OF ACADEMIC WORK ON THIS TOPIC

But academia is obsessed with provable, deterministic,
asymptotically optimal algorithms

And we only need something that is probably fast enough
most of the time (for some value of “probably” and “most of
the time”)
• And if the probably good enough algorithm is, you know... tractable...

one might even consider it qualitatively better!

Wednesday, October 6, 2010

GOTO 2010

LET’S TAKE A STEP BACK

Wednesday, October 6, 2010

GOTO 2010

EARTH

Wednesday, October 6, 2010

GOTO 2010

EARTH

Wednesday, October 6, 2010

GOTO 2010

EARTH

Wednesday, October 6, 2010

GOTO 2010

EARTH

Wednesday, October 6, 2010

GOTO 2010

EARTH, TREE, RING

Wednesday, October 6, 2010

GOTO 2010

DATA MODEL
EACH NODE HAS

Data items that are being indexed: structured byte arrays
containing indexed attributes and identifiers
• In order to simplify caching and traversal logic we decided to store

data in leaf nodes only

Metadata about its state: whether it’s an internal or leaf node,
pointers to its children, and perhaps additional statistical
information

Wednesday, October 6, 2010

GOTO 2010

SPLITTING
IT’S JUST A CONCURRENT TREE
SPLITTING SHOULDN’T LOCK THE TREE FOR
READS OR WRITES AND FAILURES CAN’T CAUSE
CORRUPTION

Splits are optimistic, idempotent, and fail-forward
Instead of locking, writes are replicated to the splitting node and
the relevant child[ren] while a split operation is taking place
• Cleanup occurs after the split is completed and all interested nodes are

aware that the split has occurred

• Cassandra writes are idempotent, so splits are too - if a split fails, it is
simply be retried

SPLIT SIZE: A TUNABLE KNOB FOR BALANCING
LOCALITY AND DISTRIBUTEDNESS

Wednesday, October 6, 2010

GOTO 2010

THE ROOT
IT’S SO HOT
HARD PROBLEM

For a tree to be useful, it has to be traversed
• Typically, tree traversal starts at the root

• Further, the only discoverable node in our tree is the root, which
limited our options

• But traversing through the root means reading the root, and reading
the root for every traversal (read and write) was unacceptable

Again, lots of academic solutions - most promising was a skip
graph, but that required O(n log(n)) data - also unacceptable

Some proposals suggest using a minimum tree depth, but
that’s a bandaid on a bullet wound: you just get multiple hot-
spots at your minimum depth

Wednesday, October 6, 2010

GOTO 2010

THE ROOT
IT’S SO HOT
STUPID SIMPLE SOLUTION

Keep an LRU cache of nodes that have been traversed
Start traversals at the most selective relevant node

If that node doesn’t satisfy you, traverse up the tree

Along with your result set, return a list of nodes that were
traversed so the caller can add them to its cache

PERFORMANCE CHARACTERISTICS
Best case on the happy path (everything cached) has zero read
overhead

Worst case, with nothing cached, O(log(n)) read overhead

RE-BALANCING IS MOSTLY UNNECESSARY!

Wednesday, October 6, 2010

GOTO 2010

TRAVERSALS
THEY GO BOTH WAYS

If traversals can start anywhere in the tree, they need to be
careful to cover every node that is relevant to it, which may
mean traversing down and up the tree

Wednesday, October 6, 2010

GOTO 2010

TRAVERSAL
NEAREST NEIGHBOR

x o

o

o

o

Wednesday, October 6, 2010

GOTO 2010

TRAVERSAL
NEAREST NEIGHBOR

x o

o

o

o

Wednesday, October 6, 2010

GOTO 2010

TRAVERSAL
NEAREST NEIGHBOR

x o

o

o

o

Wednesday, October 6, 2010

GOTO 2010

CLIMAX

Wednesday, October 6, 2010

GOTO 2010

DISTRIBUTED TREE
SUPPORTED QUERIES

EXACT MATCH
RANGE

PROXIMITY
SOMETHING ELSE I HAVEN’T
EVEN HEARD OF

Wednesday, October 6, 2010

GOTO 2010

DISTRIBUTED TREE
SUPPORTED QUERIES

EXACT MATCH
RANGE

PROXIMITY
SOMETHING ELSE I HAVEN’T
EVEN HEARD OF

MULP
DINSNS!

Wednesday, October 6, 2010

GOTO 2010

DESIRABLE CHARACTERISTICS

HIGHLY AVAILABLE
FAULT TOLERANT
DECENTRALIZED
HORIZONTALLY SCALABLE
OPERATIONALLY SIMPLE

Wednesday, October 6, 2010

GOTO 2010

THE END?

Wednesday, October 6, 2010

GOTO 2010

FUTURE IMPROVEMENTS
GENERALIZE TO GRAPHS

A tree is a degenerate graph

I believe this approach would work for any graph for which you
can do an online computation of strongly connected
subgraphs and the connections are relatively stable

Would probably need a more sophisticated bridging model
• Something like Valiant’s Bulk-Synchronous Parallel model (used in

Google Pregel)

Wednesday, October 6, 2010

GOTO 2010

FUTURE IMPROVEMENTS
AGGREGATIONS UP THE TREE

Statistics about the data in the leaf node can be bubbled up
the tree to provide efficient parameter estimates at various
levels of granularity

When you really embrace eventual consistency and best-effort
style systems a lot of intractable problems become tractable in
generic ways

Wednesday, October 6, 2010

GOTO 2010

QUESTIONS?

MIKE MALONE
INFRASTRUCTURE ENGINEER
mike@simplegeo.com
@mjmalone

Wednesday, October 6, 2010

GOTO 2010

Wednesday, October 6, 2010

