
Scala at Work

Martin Odersky

Scala Solutions and EPFL

2

Where it comes from

Scala has established itself as one of the main alternative languages
on the JVM.

Prehistory:

1996 – 1997: Pizza

1998 – 2000: GJ, Java generics, javac

(“make Java better”)

Timeline:

2003 – 2006: The Scala “Experiment”

2006 – 2009: An industrial strength programming language

(“make a better Java”)

Momentum

3

Open-source language with

 Site scala-lang.org: 100K+ visitors/month

 40,000 downloads/month, 10x growth last year

 12 books in print

 Two conferences: Scala Liftoff and ScalaDays

 33+ active user groups

 60% USA, 30% Europe, 10% rest

4

5

Why Scala?

6

Scala is a Unifier

Agile, with lightweight syntax

Object-Oriented Scala Functional

Safe and performant, with strong static tpying

7

Let’s see an example:

8

A class ...
public class Person {

public final String name;

public final int age;

Person(String name, int age) {

this.name = name;

this.age = age;

}

}

class Person(val name: String,
val age: Int)

... in Java:

... in Scala:

9

... and its usage

import java.util.ArrayList;

...

Person[] people;

Person[] minors;

Person[] adults;

{ ArrayList<Person> minorsList = new ArrayList<Person>();

ArrayList<Person> adultsList = new ArrayList<Person>();

for (int i = 0; i < people.length; i++)

(people[i].age < 18 ? minorsList : adultsList)

.add(people[i]);

minors = minorsList.toArray(people);

adults = adultsList.toArray(people);

}

... in Java:

... in Scala: val people: Array[Person]
val (minors, adults) = people partition (_.age < 18)

A simple pattern match

An infix method call

A function value

10

The Bottom Line

When going from Java to Scala, expect at least a factor of 2
reduction in LOC.

But does it matter?
Doesn’t Eclipse write these extra lines for me?

This does matter. Eye-tracking experiments* show that for program
comprehension, average time spent per word of source code is
constant.

So, roughly, half the code means half the time necessary to
understand it.

*G. Dubochet. Computer Code as a Medium for Human Communication: Are Programming

Languages Improving? In 21st Annual Psychology of Programming Interest Group Conference,

pages 174-187, Limerick, Ireland, 2009.

11

But there’s more to it

12

Embedding Domain-Specific Languages

Scala’s flexible syntax makes it
easy to define

high-level APIs &

embedded DSLs

Examples:

- actors (akka, Twitter’s
message queues)

- specs, ScalaCheck

- ScalaQuery, squeryl, querulous

scalac’s plugin architecture makes it easy to typecheck DSLs and to
enrich their semantics.

// asynchronous message send

actor ! message

// message receive

receive {

case msgpat1 => action1

…

case msgpatn => actionn

}

13

Scalability demands extensibility

Take numeric data types:

– Today's languages support int, long, float, double.

– Should they also support BigInt, BigDecimal, Complex, Rational,
Interval, Polynomial?

There are good reasons for each of these types

But a language combining them all would be too complex.

Better alternative: Let users grow their language according to their needs.

14

Adding new datatypes - seamlessly

For instance type BigInt:

def factorial(x: BigInt): BigInt =
if (x == 0) 1 else x * factorial(x - 1)

Compare with using Java's class:

import java.math.BigInteger
def factorial(x: BigInteger): BigInteger =
if (x == BigInteger.ZERO)
BigInteger.ONE

else
x.multiply(factorial(x.subtract(BigInteger.ONE)))

}

15

Implementing new datatypes -

seamlessly

Here's how BigInt is implemented

import java.math.BigInteger

class BigInt(val bigInteger: BigInteger)
extends java.lang.Number {

def + (that: BigInt) =
new BigInt(this.bigInteger add that.bigInteger)

def - (that: BigInt) =
new BigInt(this.bigInteger subtract that.bigInteger)

… // other methods implemented analogously
}

+ is an identifier; can be used as a

method name

Infix operations are method calls:

a + b is the same as a.+(b)

a add b is the same as a.add(b)

16

Adding new control structures

• For instance using for resource control (in Java 7)

• Instead of:

using (new BufferedReader(new FileReader(path))) {
f => println(f.readLine())

}

val f = new BufferedReader(new FileReader(path))
try {
println(f.readLine())

} finally {
if (f != null)
try f.close()
catch { case ex: IOException => }

}

17

Implementing new control structures:

Here's how one would go about implementing using:

def using[T <: { def close() }]
(resource: T)
(block: T => Unit) =

try {
block(resource)

} finally {
if (resource != null)
try resource.close()
catch { case ex: IOException => }

}

T is a type parameter... … supporting a close method

A closure that takes a T parameter

Producer or Consumer?

Scala feels radically different for producers and consumers

of advanced libraries.

For the consumer:

– Really easy

– Things work intuitively

– Can concentrate on domain, not implementation

For the producer:

– Sophisticated tool set

– Can push the boundaries of what’s possible

– Requires expertise and taste

18

19

Scalability at work:

Scala 2.8 Collections

4-20

Collection Properties

• object-oriented

• generic: List[T], Map[K, V]

• optionally persistent, e.g.
collection.immutable.Seq

• higher-order, with methods

such as foreach, map,
filter.

• Uniform return type principle:

Operations return collections of

the same type (constructor) as

their left operand, as long as

this makes sense.

scala> val ys = List(1, 2, 3)

ys: List[Int] = List(1, 2, 3)

scala> val xs: Seq[Int] = ys

xs: Seq[Int] = List(1, 2, 3)

scala> xs map (_ + 1)

res0: Seq[Int] = List(2, 3, 4)

scala> ys map (_ + 1)

res1: List[Int] = List(2, 3, 4)

This makes a very elegant and powerful combination.

Using Collections: Map and filter

scala> val xs = List(1, 2, 3)

xs: List[Int] = List(1, 2, 3)

scala> val ys = xs map (x => x + 1)

ys: List[Int] = List(2, 3, 4)

scala> val ys = xs map (_ + 1)

ys: List[Int] = List(2, 3, 4)

scala> val zs = ys filter (_ % 2 == 0)

zs: List[Int] = List(2, 4)

scala> val as = ys map (0 to _)

as: List(Range(0, 1, 2), Range(0, 1, 2, 3), Range(0, 1, 2, 3, 4))

21

scala> val bs = as.flatten

bs: List[Int] = List(0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4)

scala> val bs = ys flatMap (0 to _)

bs: List[Int] = List(0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 4)

22

Using Collections: Flatmap

scala> for (x <- xs) yield x + 1 // same as map

res14: List[Int] = List(2, 3, 4)

scala> for (x <- res14 if x % 2 == 0) yield x // ~ filter

res15: List[Int] = List(2, 4)

scala> for (x <- xs; y <- 0 to x) yield y // same as flatMap

res17: List[Int] = List(0, 1, 0, 1, 2, 0, 1, 2, 3)

23

Using Collections: For Notation

scala> val m = Map('1' -> "ABC", 2 -> "DEF", 3 -> "GHI")

m: Map[AnyVal, String] = Map((1,ABC), (2,DEF), (3,GHI))

scala> val m = Map(1 -> "ABC", 2 -> "DEF", 3 -> "GHI")

m: Map[Int, String] = Map((1,ABC), (2,DEF), (3,GHI))

scala> m(2)

res0: String = DEF

scala> m + (4 -> "JKL")

res1: Map[Int, String] = Map((1,ABC), (2,DEF), (3,GHI), (4,JKL))

scala> m map { case (k, v) => (v, k) }

res8: Map[String,Int] = Map((ABC,1), (DEF,2), (GHI,3))

24

Using Maps

2-25

An Example

• Task: Phone keys have mnemonics assigned to them.
val mnemonics = Map(

'2' -> "ABC", '3' -> "DEF", '4' -> "GHI", '5' -> "JKL",

'6' -> "MNO", '7' -> "PQRS", '8' -> "TUV", '9' -> "WXYZ")

• Assume you are given a dictionary dict as a list of words. Design a class
Coder with a method translate such that

new Coder(dict).translate(phoneNumber)

produces all phrases of words in dict that can serve as mnemonics for the
phone number.

• Example: The phone number “7225276257” should have the mnemonic

Scala rocks

as one element of the list of solution phrases.

2-26

Program Example: Phone Mnemonics

• This example was taken from:

Lutz Prechelt: An Empirical Comparison of Seven Programming

Languages. IEEE Computer 33(10): 23-29 (2000)

• Tested with Tcl, Python, Perl, Rexx, Java, C++, C

• Code size medians:

– 100 loc for scripting languages

– 200-300 loc for the others

http://www.informatik.uni-trier.de/~ley/db/journals/computer/computer33.html

2-27

Outline of Class Coder

import collection.mutable.HashMap

class Coder(words: List[String]) {

private val mnemonics = Map(
'2' -> "ABC", '3' -> "DEF", '4' -> "GHI", '5' -> "JKL",
'6' -> "MNO", '7' -> "PQRS", '8' -> "TUV", '9' -> "WXYZ")

/** Invert the mnemonics map to give a map from chars 'A' ... 'Z' to '2' ... '9' */
private val upperCode: Map[Char, Char] = ??

/** Maps a word to the digit string it can represent */
private def wordCode(word: String): String = ??

/** A map from digit strings to the words that represent them */
private val wordsForNum = new HashMap[String, Set[String]] {
override def default(number: String) = Set()

}
for (word <- words) wordsForNum(wordCode(word)) += word

/** Return all ways to encode a number as a list of words */
def encode(number: String): List[List[String]] = ??

/** Maps a number to a list of all word phrases that can represent it */
def translate(number: String): List[String] = encode(number) map (_ mkString " ")

}

2-28

Class Coder (1)
import collection.mutable.HashMap

class Coder(words: List[String]) {

private val mnemonics = Map(
'2' -> "ABC", '3' -> "DEF", '4' -> "GHI", '5' -> "JKL",
'6' -> "MNO", '7' -> "PQRS", '8' -> "TUV", '9' -> "WXYZ")

/** Invert the mnemonics map to give a map from chars 'A' ... 'Z' to '2' ... '9' */
private val upperCode: Map[Char, Char] =
for ((digit, str) <- m; letter <- str) yield (letter -> digit)

/** Maps a word to the digit string it can represent */
private def wordCode(word: String): String = word map (c => upperCode(c.toUpper))

/** A map from digit strings to the words that represent them */
private val wordsForNum = new HashMap[String, Set[String]] {
override def default(number: String) = Set()

}
for (word <- words) wordsForNum(wordCode(word)) += word

/** Return all ways to encode a number as a list of words */
def encode(number: String): List[List[String]] = ??

/** Maps a number to a list of all word phrases that can represent it */
def translate(number: String): List[String] = encode(number) map (_ mkString " ")

}

2-29

Class Coder (2)

import collection.mutable.HashMap

class Coder(words: List[String]) {

...

/** Return all ways to encode a number as a list of words */
def encode(number: String): List[List[String]] =

if (number.isEmpty)

List(List())

else

for {

splitPoint <- (1 to number.length).toList

word <- wordsForNum(number take splitPoint)

rest <- encode(number drop splitPoint)

} yield word :: rest

/** Maps a number to a list of all word phrases that can represent it */
def translate(number: String): List[String] = encode(number) map (_ mkString " ")

}

30

How is all this implemented?

2-31

Everything is a Library

• Collections feel like they are an organic part of Scala

• But in fact the language does not contain any collection-

related constructs

– no collection types

– no collection literals

– no collection operators

• Everything is done in a library

• Everything is extensible

– You can write your own collections which look and feel like

the standard ones

4-32

Some General Scala Collections

4-33

Mutable or Immutable?

• All general collections come in three forms, and are stored in different

packages:

scala.collection

scala.collection.mutable

scala.collection.immutable

• Immutable is the default, i.e. predefined imports go to
scala.collection.immutable

• General collections in scala.collection can be mutable or immutable.

• There are aliases for the most commonly used collections.

scala.collection.immutable.List where it is defined

scala.List the alias in the scala package

List because scala._ is

automatically imported

4-34

Immutable Scala Collections

4-35

Mutable Scala Collections

New Implementations: Vectors and Hash Tries

• Trees with branch factor of 32.

• Persistent data structures with very efficient sequential and random
access.

• Invented by Phil Bagwell, then adopted in Clojure.

• New: Persistent prepend/append/update in constant amortized time.

• Next: Fast splits and joins for parallel transformations.

The Uniform Return Type Principle

Bulk operations return

collections of the same

type (constructor) as their

left operand. (DWIM)

This is tricky to implement without code duplication!

scala> val ys = List(1, 2, 3)

ys: List[Int] = List(1, 2, 3)

scala> val xs: Seq[Int] = ys

xs: Seq[Int] = List(1, 2, 3)

scala> xs map (_ + 1)

res0: Seq[Int] = List(2, 3, 4)

scala> ys map (_ + 1)

res1: List[Int] = List(2, 3, 4)

4-38

Pre 2.8 Collection Structure

trait Iterable[A] {

def filter(p: A => Boolean): Iterable[A] = ...

def partition(p: A => Boolean) =

(filter(p(_)), filter(!p(_)))

def map[B](f: A => B): Iterable[B] = ...

}

trait Seq[A] extends Iterable[A] {

def filter(p: A => Boolean): Seq[A] = ...

override def partition(p: A => Boolean) =

(filter(p(_)), filter(!p(_)))

def map[B](f: A => B): Seq[B] = ...

}

4-39

Types force duplication

filter needs to be re-defined on each level

partition also needs to be re-implemented on each level, even

though its definition is everywhere the same.

The same pattern repeats for many other operations and types.

4-40

Signs of Bit Rot

Lots of duplications of methods.
– Methods returning collections have to be repeated for every collection

type.

Inconsistencies.
– Sometimes methods such as filter, map were not specialized in

subclasses

– More often, they only existed in subclasses, even though they could be
generalized

“Broken window” effect.
– Classes that already had some ad-hoc methods became dumping

grounds for lots more.

– Classes that didn’t stayed clean.

4-41

Excerpts from List.scala

How to do better?

Can we abstract out the return type?

Look at map: Need to abstract out the type constructor, not just the type.

But we can do that using Scala’s higher-kinded types!

trait Iterable[A]
def map[B](f: A => B): Iterable[B]

trait Seq[A]
def map[B](f: A => B): Seq[B]

HK Types Collection Structure

trait TraversableLike[A, CC[X]] {

def filter(p: A => Boolean): CC[A]

def map[B](f: A => B): CC[B]

}

trait Traversable[A] extends TraversableLike[A, Traversable]

trait Iterable[A] extends TraversableLike[A, Iterable]

trait Seq[A] extends TraversableLike[A, Seq]

Here, CC is a parameter representing a type constructor.

Implementation with Builders

All ops in Traversable are implemented in terms of foreach and newBuilder.

trait Builder[A, Coll] {

def += (elem: A) // add elems

def result: Coll // return result

}

trait TraversableLike[A, CC[X]] {

def foreach(f: A => Unit)

def newBuilder[B]: Builder[B, CC[B]]

def map[B](f: A => B): CC[B] = {

val b = newBuilder[B]

foreach (x => b += f(x))

b.result

}

}

Unfortunately ...

... things are not as parametric as it seems at first. Take:

scala> val bs = BitSet(1, 2, 3)
bs: scala.collection.immutable.BitSet = BitSet(1, 2, 3)

scala> bs map (_ + 1)
res0: scala.collection.immutable.BitSet = BitSet(2, 3, 4)

scala> bs map (_.toString + "!")
res1: scala.collection.immutable.Set[java.lang.String] = Set(1!, 2!, 3!)

Note that the result type is the “best possible” type that fits the element

type of the new collection.

Other examples: SortedSet, String.

class BitSet extends Set[Int]

How to advance?

We need more flexibility. Can we define our own type system for
collections?

Question: Given old collection type From, new element type Elem, and
new collection type To:

Can an operation on From build a collection of type To with Elem
elements?

Captured in: CanBuildFrom[From, Elem, To]

Facts about CanBuildFrom

Can be stated as axioms and inference rules:

CanBuildFrom[Traversable[A], B, Traversable[B]]

CanBuildFrom[Set[A], B, Set[B]]

CanBuildFrom[BitSet, B, Set[B]]

CanBuildFrom[BitSet, Int, BitSet]

CanBuildFrom[String, Char, String]

CanBuildFrom[String, B, Seq[B]]

CanBuildFrom[SortedSet[A], B, SortedSet[B]] :- Ordering[B]

where A and B are arbitrary types.

Implicitly Injected Theories

Type theories such as the one for CanBuildFrom can be injected using

implicits.

A predicate:

trait CanBuildFrom[From, Elem, To] {

def apply(coll: From): Builder[Elem, To]

}

Axioms:
implicit def bf1[A, B]: CanBuildFrom[Traversable[A], B, Traversable[B]]

implicit def bf2[A, B]: CanBuildFrom[Set[A], B, Set[B]]

implicit def bf3: CanBuildFrom[BitSet, Int, BitSet]

Inference rule:
implicit def bf4[A, B] (implicit ord: Ordering[B])

: CanBuildFrom[SortedSet[A], B, SortedSet[B]]

Connecting with Map

• Here’s how map can be defined in terms CanBuildFrom:

trait TraversableLike[A, Coll] { this: Coll =>

def foreach(f: A => Unit)

def newBuilder: Builder[A, Coll]

def map[B, To](f: A => B)

(implicit cbf: CanBuildFrom[Coll, B, To]): To = {

val b = cbf(this)

foreach (x => b += f(x))

b.result

}

}

4-50

Objections

4-51

4-52

Use Cases

• How to explain

def map[B, To](f: A => B)

(implicit cbf: CanBuildFrom[Coll, B, To]): To

to a beginner?

• Key observation: We can approximate the type of map.

• For everyone but the most expert user

def map[B](f: A => B): Traversable[B] // in class Traversable
def map[B](f: A => B): Seq[B] // in class Seq, etc

is detailed enough.

• These types are correct, they are just not as general as the type

that’s actually implemented.

4-53

Part of the Solution: Flexible Doc Comments

4-54

Going Further

• In Scala 2.9, collections will support parallel operations.

• Will be out by January 2011.

• The right tool for addressing the PPP (popular parallel programming)

challenge.

• I expect this to be the cornerstone for making use of multicores for

the rest of us.

55

But how long will it take me

to switch?

56

100%

200%

0%

4-6 weeks 8-12 weeks

Learning Curves

Scala

Keeps familiar environment: :

IDE’s: Eclipse, IDEA, Netbeans, ...

Tools: JavaRebel, FindBugs, Maven, ...

Libraries: nio, collections, FJ, ...

Frameworks; Spring, OSGI, J2EE, ...

...all work out of the box. .

Alex Payne, Twitter:

“Ops doesn’t know it’s not Java”

Productivity

Alex McGuire, EDF, who replaced majority of

300K lines Java with Scala:

“Picking up Scala was really easy.”

“Begin by writing Scala in Java style.”

“With Scala you can mix and match with your

old Java.”

“You can manage risk really well.”

57

How to get started

100s of resources on the

web.

Here are three great

entry points:

• Simply Scala

• Scalazine @ artima.com

• Scala for Java
refugees

58

How to find out more

Scala site: www.scala-lang.org 12 books

59

Support

Open Source Ecosystem ...

akka scalable actors

sbt simple build tool

lift, play web frameworks

kestrel, querulous middleware from Twitter

Migrations middleware from Sony

ScalaTest, specs, ScalaCheck testing support

ScalaModules OSGI integration

... complemented by commercial support

60

Thank You

61

Scala cheat sheet (1): Definitions

Scala method definitions:

def fun(x: Int): Int = {
result

}

or def fun(x: Int) = result

def fun = result

Scala variable definitions:

var x: Int = expression
val x: String = expression

or var x = expression
val x = expression

Java method definition:

int fun(int x) {
return result;

}

(no parameterless methods)

Java variable definitions:

int x = expression
final String x = expression

62

Scala cheat sheet (2): Expressions

Scala method calls:

obj.meth(arg)
or obj meth arg

Scala choice expressions:

if (cond) expr1 else expr2

expr match {
case pat1 => expr1
....
case patn => exprn

}

Java method call:

obj.meth(arg)
(no operator overloading)

Java choice expressions, stats:

cond ? expr1 : expr2

if (cond) return expr1;
else return expr2;

switch (expr) {
case pat1 : return expr1;
...
case patn : return exprn ;

} // statement only

63

Scala cheat sheet (3): Objects and Classes

Scala Class and Object

class Sample(x: Int) {
def instMeth(y: Int) = x + y

}

object Sample {
def staticMeth(x:Int, y:Int)
= x * y

}

Java Class with static

class Sample {
final int x;
Sample(int x) {
this.x = x

}

int instMeth(int y) {
return x + y;

}

static
int staticMeth(int x,int y) {

return x * y;
}

}

64

Scala cheat sheet (4): Traits

Scala Trait

trait T {
def absMeth(x:String):String

def concreteMeth(x: String) =
x+field

var field = “!”

}

Scala mixin composition:

class C extends Super with T

Java Interface

interface T {
String absMeth(String x)

(no concrete methods)

(no fields)
}

Java extension + implementation:

class C extends Super
implements T

