£ Question of
Craftsmanshivp

Kevlin Henney

kevilingcurbralan. com
@leviinfenney

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Pattern Language for
Distributed Computing

N1
'q Frank Buschmann

Kevlin Henney

Douglas C. Schmidt

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

On Patterns and Pattern Languages

Frank Buschmann
Kevlin Henne! y
Douglas C. Schmidt

i:D{JID‘ﬁEEZ
BEDRD
DRk ED
¥ i ™o g
MDD
AD 0
« | el
BYEEE
)

QElEDD
e

EpTEnbd
DESNPO

mz?m

Collective Wisdom
from the Experts

Programmer

O’REILLY" Edited by Kevlin Henney

Art. Craft. Engineering. Science. These are the swirling muses
of design patterns. Art and science are stories; craft and
engineering are actions.

Craft is midway between art and science; art and craft stand
over against engineering and science. Art is the unique
example, the first thing, the story as artifact condensing out
of talent and desire. Craft is reliable production of quality. A
craftsman might be disappointed but rarely fails. A work of
craft is the product of a person and materials. Engineering is
reliable and efficient production of things for the use and
convenience of people. Science is a process of making a story
that can be used for engineering.

Wayne Cool

foreword to
Pattern-Oriented Software Architecture, Volume 5:
On Patterns and Pattern Languages

4§ HERE I3 THE PFHILDGOPHY OF CUILDENSTERN:
DISCHETE TO SELEST PE7 OB PEE BESPECTIVELY:

iTog TOT STMODTINT DOASTALL TS DS TIR

ESrTAT AROT POTDET T

OH EVERY APPEARANCE OH DISAPFEABANCE OF THE MANTAL THROTTLE
OH EVERY AFPPEARANCE OF THE ATTITUDE-HOLD DISCHETE TS SELECT PEE

amn sEraanem

/* grep: search for regexp in file #/ _ _
ﬂ;” ,int grep(char *regexp, FILE *f, char *name) import re, collections
i@ 0
R N
s | int n, nmatch; def words(text): return re.findall('[a-z]+", text.lower())
s char buf [BUFSIZ];
nmatch = 0 def train(features):
{ while (fgets(buf, =sizeof buf, f) != NULL) model = collections.defaultdict (lambda: 1)
n = strlen(buf): for £ in features:
| if (n > 0 && buf[n-1] == '\n'") _
buf[n-1] = '\0'; model [f] += 1
if (match(regexp, buf)) { return model
nmatch++;
if (mame !'= NULL) _ - . .
printf("is:", nam NWORDS = train(words(file|'big.txt').read()))
Legar printf("Es\n", buf):
teeis ¥ alphabet = 'abcdefghijklmnopgrstuvwxyz'
PIETE ¥
LBE 21 return nmatch; -
&é:;: ' def edicsl (word) :
splits [(word[:1i], word[i:]) for i in range (len(word) + 1)]
/* matchhere: search for regexp at beginning of t© deletes = [a + b[l:] for a, b in splits if b]
i chhi char * , char * - - -
:nt matchhers (char fregexp ar rrext) transposes = [a + b[1l] + b[0] + b[2:] for a, b in splits if len(b)>1]
if (regexp[0] == '\0") replaces = [a + ¢ + b[l:] for a, b in splits for c in alphabet if b]
) return 1; inserts = [a + ¢ + b for a, b in splits for ¢ in alphabet]
if (zegexp[l] == '*") return set (deletes + transposes + replaces + inserts)
return matchstar (regexp[0], regex
if (regexp[0] == '$' && regexp[l] == '\O0"
return *text == '\0'; def known edits2 (word):
if (*text!='\0' && (regexp[0]=='.' || reg return set(e2 for el in editsl (word) for e2 in editsl(el) if e2 in NWORDS)
return matchhere (regexp+l, text+l
EHE return 0; :
f:a'g} Aaf AL (anrdal « re tdEflnE tevﬂl A Env}
{2435
IE?EJ A 1 ? A 1 1 7 1 Exp} Exp}
/* match: search for regexp anyi . + + _ - _
int match(char *regexp, char *ts ~ - — " - — — > " — - E ”~].CICI]-!.'IJ.D VEI.I‘lEIl-:I'].E value e EI!I.V]-]-
- { . Thas S N Y. _xt-—of-gquotation exp))
H if (regexp[0] == '™') return max (candi - = _ -
f‘.éf‘ st —— { (assignment? exp) (eval-assignment exp env))
67 do { /* mast look even if string is empty =/ S {{definition? exp) (eval-definition exp env))
if (matchhere (regexp, text))] _a
return 1: {(1f? exp) (eval-if exp env))
} while (*text++ != '\0"); { (lambda? exp)
nesce zeturn 0; (make-procedure (lambda-parameters exp)
e ; {lambda-body exp)
66! f* matchstar: search for ceregexp at beginning of text */ EIIV]- }
int matchstar(int c, char *regexp, char *text) R
{ { (begin? exp)
do { ..-_“’ a * matches zero or more instances */ | Lk ﬁeval—sequence ﬁbegin—actinns E.I{p]- EIIV]-]-
if [(matchhere (regexp, text)) _
return 1; { (cond? exp) (eval (cond->if exp) env))
} while (*text != '\0' && (*text++ == c || c == '."}): a lication? ex
return 0; ‘ ‘ EE) P]‘
} {apply (eval (operator exp) env)
S Taraa e T o] AT {lizst-of-values (operands exp) env)))
LD DI W 22 &7 . RID L 133 CALL BESTART? 1
CHLL FHOVE 205 255 66 La it CALL (else
Ak =4 ¥ 4] -
AT A Ty FET ia: I.{; EIL jerror "Unknown expression type — EVAL™ exp))))
TCF VERTCTID # NO: CONTINTE WITHE R.0.D.

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That 1s, while there 1s value in the items on
the right, we value the items on the left more.

Anyway, the point I'm making is that we need to be very careful. Just
as they're doing with management consultants, sooner or later our
customers will figure out that the management practices of Agile don't
deliver working software any more than they can grill cheese or power
an electric bicycle.

The business of software is software. We don't make bean bags and
we don't sell ice cream, even if that's what will solve the customer's
problems. We make working software. And the Manifesto for Agile
Software Development is a manifesto for doing it better.

If you don't know how to make software, then I'm afraid you've
boarded the wrong train, my friend. This train is going to Better
Software. The train for Management Snake Oil leaves from a different
platform. You can't miss it. It's made of invisible gold and it runs on
magic beans.

Jason Gorman, "We Emulate Management Consultants at Our Peril"
http://parlezuml.com/blog/?postid=946

About

Books CD-ROMS Newsletter

Blog Consulting Seminars Calendar

7-20-03 The Ideal Programmer

In January of this year, Scott Meyers (author of Effective
C++), Bill Venners, Chuck Allison and myself convened a
technical summit in Portland called "Writing Better Code."
This was a small group that we invited from among people
who had spent time thinking and writing about the issues
around creation of code and projects. The list included:

Scott Meyers
Bruce Eckel

Bill Venners
Chuck Allison
Joshua Bloch
Alistair Cockburn
Dave Thomas
Andrew Hunt
Pete McBreen
Angelika Langer
Chris Sells
Kevlin Henney
Randy Stafford
Matt Gerrans

FAQ Search

Links I Read
Cafe Au Lait
Artima

Daily Python URL
Martin Fowler
Joel on Software
Paul Graham

Cringely

Bruce Eckel

http://mindview.net/WebLog/log-0038

Highly
Aligned

ALIGNMENT

Less
Aligned

Less Effective EFEICACY Highly Effective

(n=504) IT 3-Year Sales
Spending Compound
Annual

Growth Rate

David Schpilberg, Steve Berez, Rudy Puryear and Sachin Shah

"Avoiding the Alignment Trap in Information Technology"

MIT Sloan Management Review

e £
X N\ &

i%ﬁ/)_/’/@"/n Jar Defucre COrafsmandiip

Ra v
INClD]

11385

the bar.

As aspiring Software Craftsmen we are raising the bar of
professional software development by practicing it and helping
others learn the craft. Through this work we have come to
value:

Not only working software,
but also well-crafted software

Not only responding to change,
but also Steadily adding value

Not only individuals and interactions,
but also a community of professionals

Not only customer collaboration,
but also productive parinerships

That is, in pursuit of the items on the left we have found the
items on the right to be indispensable.

{formi

.._ullf!j.f!(: i,

We have been up all night, my friends and I, beneath
mosque lamps whose brass cupolas are bright as our
souls, because like them they were illuminated by the
internal glow of electric hearts. And trampling
underfoot our native sloth on opulent Persian carpets,
we have been discussing right up to the limits of logic
and scrawling the paper with demented writing.

Our hearts were filled with an immense pride at feeling
ourselves standing quite alone, like lighthouses or like
the sentinels in an outpost, facing the army of enemy
stars encamped in their celestial bivouacs. Alone with
the engineers in the infernal stokeholes of great ships,
alone with the black spirits which rage in the belly of
rogue locomotives, alone with the drunkards beating
their wings against the walls.

N =

10.

11.

We want to sing the love of danger, the habit of energy and rashness.

The essential elements of our poetry will be courage, audacity and revolt.

Literature has up to now magnified pensive immobility, ecstasy and slumber. We want to exalt
movements of aggression, feverish sleeplessness, the double march, the perilous leap, the slap
and the blow with the fist.

We declare that the splendour of the world has been enriched by a new beauty: the beauty of
speed. A racing automobile with its bonnet adorned with great tubes like serpents with explosive
breath ... a roaring motor car which seems to run on machine-gun fire, is more beautiful than the
Victory of Samothrace.

We want to sing the man at the wheel, the ideal axis of which crosses the earth, itself hurled along
its orbit.

The poet must spend himself with warmth, glamour and prodigality to increase the enthusiastic
fervour of the primordial elements.

Beauty exists only in struggle. There is no masterpiece that has not an aggressive character. Poetry
must be a violent assault on the forces of the unknown, to force them to bow before man.

We are on the extreme promontory of the centuries! What is the use of looking behind at the
moment when we must open the mysterious shutters of the impossible? Time and Space died
yesterday. We are already living in the absolute, since we have already created eternal,
omnipresent speed.

We want to glorify war — the only cure for the world — militarism, patriotism, the destructive
gesture of the anarchists, the beautiful ideas which kill, and contempt for woman.

We want to demolish museums and libraries, fight morality, feminism and all opportunist and
utilitarian cowardice.

We will sing of the great crowds agitated by work, pleasure and revolt; the multi-coloured and
polyphonic surf of revolutions in modern capitals: the nocturnal vibration of the arsenals and the
workshops beneath their violent electric moons: the gluttonous railway stations devouring
smoking serpents; factories suspended from the clouds by the thread of their smoke; bridges with
the leap of gymnasts flung across the diabolic cutlery of sunny rivers: adventurous steamers
sniffing the horizon; great-breasted locomotives, puffing on the rails like enormous steel horses
with long tubes for bridle, and the gliding flight of aeroplanes whose propeller sounds like the
flapping of a flag and the applause of enthusiastic crowds.

MANIFEST 1 OF ,,THE STYLE”, 19i8.

|. There is an old and a new consciousness of time.

The old is connected with the individual.

The new is connected with the universal.

The struggle of the individual against the universal is revealing itself in the world-war as
well as in the art of the present day.

9. The war is destroying the old world with its contents : individual domination in every state.
3. The new art has brought forward what the new consciousness of time contains:
a balance between the universal and the individual.

4. The new consciousness is prepared to realise the internal life as well as the external life.
5. Traditions, dogmas and the domination of the individual are opposed to this realisation.
6. The founders of the new plastic art therefore call upon all, who believe in the refor-
mation of art and culture, to annihilate these obstacles of development, as they have
annihilated in the new plastic art (by abolishing natural form) that, which prevents the
clear expression of ari, the utmost consequence of all art notion.

7. The artists of to-day have bezn driven the whole world over by the same consciousness,
and therefore have taken part from an intellectual point of view in this war against the
domination of individual despotism. They therefore sympathize with all, who work for the
formation of an international unity in Life, Art, Culture. either intellectually or materially.
8. The monthly editions of ., The Style”, xounded for that purpose, try to attain the new
wisdom of life in an exact manner.

9. Co-operation is possible by :

I. Sending, with entire approval, name, address and profession to the editor of ,. The Style”.
II. Sending critical, philesophical, architectural, scientific, litterary, musical articles or repro-
ductions.

I1l. Translating articles in different languages or distributing thoughts published in,, The Style™.

Signatures of the present collaborators: ANTONY KOK, Poet.
THEO VAN DOESBURG, Painter. PIET MONDRIAAN, Painter.
ROBT. VAN 'T HOFF, Architect. G. VANTONGERLOO, Sculptor.

VILMOS HUSZAR, Painter. JAN WILS, Architect.

KARL MARX & FREDERICK ENGELS

INTERNATIONAL gt PUBLISHERS

Comiurict
Maniesto
' i

b1 C’J‘Z

Notes on Postmodern Programming

James Noble, Robert Biddle
Computer Science,
Victoria University of Wellington, New Zealand.
| robert kjx | @mcs.vuw.ac.nz

March 23, 2002

0 Manifesto

The ultimate goal of all computer science is the program. The performance of
programs was once the noblest function of computer science, and computer
science was indispensable to great programs. Today, programming and com-
puter science exist in complacent isolation, and can only be mescued by the
conscious co-operation and collaboration of all programmers.

The universities were unable to produce this unity; and how indeed, should
they have done so, since creativity cannot be taught? Designers, programmers
and engineers must once again come to know and comprehend the composite
character of a program, both as an entity and in terms of its various parts,
Then their work will be filled with that true software spirit which, as “theory of
computing”, it has lost. Universities must return to programming. The worlds
of the formal methods and algorithm analysis, consisting only of logic and
mathematics, must become once again a world in which things are built. If the
voung person who rejoices in creative activity now begins his carcer as in the
older days by learning to program, then the unproductive “scientist” will no
lenger be condemned to inadequate science, for their skills will be preserved
for the programming in which they can achieve great things.

Designers, programmers, engineers, we must all retum bo programming!
There is no essential difference between the computer scientist and the pro-
grammer. The computer sclentist is an exalted programmer. By the grace of
Heaven and in rame moments of inspiration which transcend the will, com-
puter science may unconsciously blossom from the labour of the hand, but a
base in programming is essential to every computer scientist. It is thene that
the original source of creativity lies.

Let us therefore create a new guild of programmers without the class-dis-
tinctions that raise an arrogant barrier between programmers and computer
scientists! Let us desine, conceive, and create the new program of the future
together. [t will combine design, user-interfaces, and programming in a single
form, and will one day rise towards the heavens from the hands of a million
workers as the crystalline symbol of a new and coming faith.

Online Markets...

Networked markets are
beginning to self-organize
faster than the companies
that have traditionally
served them. Thanks to
the web, markets are
becoming better informed,
smarter, and more
demanding of qualities
missing from most
business organizations.

...People of Earth

The sky is open to the
stars. Clouds roll over us
night and day. Oceans
rise and fall. Whatever
you may have heard, this
is our world, our place to
be. Whatever you've been
told, our flags fly free.
Our heart goes on
forever. People of Earth,
remember.

People in high tech take pride in their work.
They are individuals who see the details of
the things they produce in the light of the
trials and triumphs they experience while
creating products. In the courage of
creation, they find a place to hang their
individuality. Programmers and techno types
appreciate elegant, spare code and the
occasional well-turned architectural hack.

Rick Levine, Christopher Locke, Doc Searles and David Weinberger

The Cluetrain Manifesto

The Four Project Values
Simplicity + Communication + Testing = Aggressiveness

Simplicity

We strive always to "do the simplest thing that could possibly work". We're quite serious about this. We have found that with the right
architecture and correctly-factored code, we can rapidly extend our software when the need arises. If we work on something "we’re
gonna need", we're not working on something we DO need.

Communication

We emphasize communication in every way. In our code, we all use the same formatting conventions, naming conventions, and coding
standards. This means that all methods. no matter who wrote them, look familiar and are easy to understand when we come upon them.

We code so as to express intention, not algorithm. Our method names say what they accomplish, not how they accomplish it. At every
level, we try to make our methods read like a human description of what is going on.

So that we can communicate design, we do it the same way, using CRC cards. Whenever we begin to work on some new objects, a few
of us will sit down and do some cards. Whenever we make big changes, we'll get a larger group together and work out what is to be
done. But what about the formal documentation?

Testing

We are fanatics for testing. We would like to have more lines of test than we do of actual code. Every class must have a corresponding
unit test class. Each public method should have at least one unit test method. We presently have over 1400 unit tests in the system.

When we release code, all the unit tests must run at 100%. You can’t release unless they do: if they don’t, you fix the problem

‘We have functional tests as well, that test the system from end to end by paying one or more people and checking the results. There are
hundreds of functional tests.

The result of all this testing is that we know the system works, and when we make errors we find them immediately.

Aggressiveness (Fearlessness)

The result of the other three values is that we can be aggressive, or fearless. We can change any part of the system to be better because
we know we have a solid system of tests. We can try things and if we don’t like how they work, we throw them away and try again. We
know we won'’t break the system, which gives us the confidence to move forward rapidly.

® 1997, 1998, Ronald E Jeffries
ronjeffries@acm.org
http:/iwww. xprogramming.com

Software
Craftsmanship

=

The New

Impemtive

Pete McBreen
Foreword by Dave Thomas

s 5 i e e T T

Craftsmanship has been used for centuries for the
successful transmittal of skills and the development
of communities of practice.

Pete McBreen, Software Craftsmanship

A guild is an association of craftsmen in a particular trade.

The earliest guilds were formed as confraternities of workers. They were organized in a
manner something between a trade union, a cartel and a secret society. They often
depended on grants of letters patent by an authority or monarch to enforce the flow of
trade to their self-employed members, and to retain ownership of tools and the supply of
materials. [...]

Two of the most outspoken critics of the guild system were Jean-Jacques Rousseau and
Adam Smith, and all over Europe a tendency to oppose government control over trades
in favour of laissez-faire free market systems was growing rapidly and making its way into
the political and legal system. Karl Marx in his Communist Manifesto also criticized the
guild system for its rigid gradation of social rank and the relation of oppressor/oppressed
entailed by this system.

http://en.wikipedia.org/wiki/Guild

T S 425

Home Profile Find People Settings Help Sign out

Software development can only be
considered immature because of how we
use our experience, not because we lack
experience.

Kevlin Henney

© 2010 Twitter About Us Contact Blog 5Status Goodies APl Business Help Jobs Terms Privacy

We should be careful to get out of an experience only the
wisdom that is in it — and stop there; lest we be like the
cat that sits down on a hot stove lid. She will never sit on

a hot stove lid again — and that is well; but also she will
never sit down on a cold one anymore.

Mark Twain

Q: Why it is important to acknowledge and
learn from your mistakes?

A: Acknowledging and learning from our
mistakes will help to prevent making the
same mistakes in the future and to improve
productivity in the workplace.

http//wiki.answers.com/Q/Why_it_is_important_to_acknowledge_and_learn_from_your_mistakes

The assertion that we can learn something from every
failure is often heard. This study by Earl Miller and
his colleagues Mark Histed and Anitha Pasupathy of
the Massachusetts Institute of Technology's Picower
Institute for Learning and Memory tests that notion by
looking at the learning process at the level of neurons.
The study shows how brains learn more effectively
from success than from failure. [...] Brain cells keep
track of whether recent behaviours were successful or
not. When a certain behaviour was successful, cells
became more finely tuned to what the animal was
learning. After a failure, there was little or no change
in the brain - nor was there any improvement in
behaviour.

httpy//www.asfct.org/documents/journal/2009-11/V ol1-2-9.pdf

It has become commonplace to suggest that failure is good for
entrepreneurs. In this view, failure that comes early in a
founder's career can teach them important lessons about doing
business and harden them up for the next start-up attempt. |...]

In the UK, the evidence is that novices are neither more nor
less likely to have a business that either grows or survives
than experienced founders. In Germany, where much more
extensive statistical work has been undertaken, it is clear that
those whose business had failed had worse-performing
businesses if they restarted than did novices. |...]

In short, the assumption that entrepreneurs use the lessons of
their own experience to improve their chances of creating a
series of profitable businesses is not borne out by the
evidence. Success in business remains, as in life, something of
a lottery.

David Storey, "Lessons that are wasted on entrepreneurs"

Anti-patterns don't provide a resolution of forces as
patterns do, and they are dangerous as teaching tools:
good pedagogy builds on positive examples that
students can remember, rather than negative examples.
Anti-patterns might be good diagnostic tools to
understand system problems.

James O Coplien, Software Patterns

Wise men profit more from fools than
fools from wise men; for the wise men
shun the mistakes of fools, but fools do
not imitate the successes of the wise.

Cato the Elder

A capsule definition of engineering,
independent of any discipline, as you're
likely to find: the set of practices and
technigues that have been determined to
work reliably through experience.

Glenn Vanderburg
httpy//confreaks.net/videos/282-1src2010-real-software-engineering

Structural engineering is the science and art
of designing and making, with economy and
elegance, buildings, bridges, frameworks,
and other similar structures so that they can
safely resist the forces to which they may be
subjected.

The Institution of Structural Engineers

Software engineering is the science and art
of designing and making, with economy and
elegance, applications, bridges, frameworks,
and other similar structures so that they can
safely resist the forces to which they may be
subjected.

With Economy and Elegance

Software Engineering Reclaimed

Kevlin Henney

kevlin@curbralan.com

Understanding Engineering

» The mistake has not been in treating software

development as a kind of engineering...
¢ But in assuming that it was a form of physical
engineering
* But in assuming that engineering was synonymous
with plan driven

¢ But in assuming a caricature of other engineering
disciplines to compare against and mimic

* But in assuming that there was no art, craft or sense
of aesthetics in engineering

Understanding Family

o Software engineering is a kind of informational
engineering, not a kind of physical engineering
* Therefore, software engineering is a cousin, not a
sibling (and certainly not a clone), of the other
frequently cited forms of engineering — cousins are
still family, but they have less in common
o This means that much of what has passed for
software engineering until now is pastiche

¢ Choose the wrong map, and you will end up lost
and heading in the wrong direction

Emerging Discipline

» Many known solutions and solution
approaches form a stable base to build on
* The classic topics of computer science
¢+ Using commoditised tools and libraries

* Patterns for capturing and communicating software
architecture and development experience

o (Clearer thinking about how people work
¢ Empirical and lean development processes
* Focusing on interconnected systems, not just parts

Emerging Professionalism

» A clearer sense of responsibility can be found
in many approaches advocated today

* Programmers are responsible for the quality of their
code, which includes testing, clean code, reasoned
and reasonable choice of implementation,
appropriate runtime characteristics, etc.

o [tis easier to form developer communities that
communicate norms, practices and experiences

* From discussion groups to Open Source projects

¢ From informal group meetings to conferences

Shared Understanding?

» The challenge is to make sure that what is
already known and won is known and won

* Software development is a diverse and fast moving
field, and there is already a lot to know — and not
everyone wants to know

¢ Many previous attempts at capturing and
communicating expertise have been too rigid and
imposed in their approach

* A mixture of advocacy, osmosis, openness, respect
and leading by example is needed

ne

Pride

2 s 2 S
S S— - — = X
C Pelopwent = a.f_ \"\Z'J) SZE = R Dﬂﬁtbimq
ﬂf;renh:esh;? ihegﬂn -*'g et (0 E C:\'\k_/j (_/3'?—: E: = ts-ﬁ
o E o '-:‘—' = = " § = F ‘rti <
E =535 S5:=2 lmiJbe'ElﬂEﬂT > (ﬂ(,hcefw T o=
%-E: E: e o = 2 = iChaolless % ® s . EF ﬁ@ﬂﬂlﬂnﬂl’— —
ETLT BTSN E 2 /3 S—
= = —= - E
= = ; Qo = C T ﬁ.
5 g r»?gmn e . lt’a ‘0
A {l:lrl'll'll..ﬂ|||.1 = g & N
synery ?_) = = % caries "o confitous
- Mtual E

brat |ﬁj

oo

5 %
= Immr = = Vi

Professionalism

ﬁffp:/ S, wordle. net/show/wrdl/. 1EENE/SCTAGS2009

TYPING IS NOT THE BOTTLENECK

Graphic by Sebastian Hermida
http://sbastn.com/2009/06/typing-is-not-the-bottleneck/

7]
EReOaRBAEL §dE
S8R FRLALSCHDORE
BELASEEFAGEAE
eREIAESSPEB 20BN
JRNEAsARIEAAE
RAAOF AT

Collective Wisdom
from the Experts

Programmer

O’REILLY" Edited by Kevlin Henney

The newest computer can merely
compound, at speed, the oldest problem
in the relations between human beings,
and in the end the communicator will be
confronted with the old problem, of what
to say and how to say it.

Edward R Murrow

JPIrogramming is difficalt
business. Jt should never
be undertaken in ignovance.

Qouglas Crockford
=sava Script: The Good flarts

Software craftsmanship's not the "next
big thing". It's an attempt to articulate
what the "thing" always was

10:22 AM Aug 6th via Power Twitter
Retweeted by 27 people Reply Retweet

A jasongorman

