
© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Spring - Architectures,
Patterns and Large
Applications

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Who are you?

3 3

Spring in One Slide

<bean id="dataSource" class="....BasicDataSource">	
 <property name="username" value="ewolff" />	
</bean>

<bean id="transactionManager"	
 class="....DataSourceTransactionManager">	
 <property name="dataSource" ref="dataSource" />	
</bean>	

4 4

Before we even start
 Let us talk about infrastructure configuration first

• Database, transactions etc

 Code is not under your control
• e.g. BasicDataSource, PlatformTransactionManager etc
• So no way to add annotations

 Different configurations
• test: Tomcat
• production: full Java EE

5 5

Tips on Infrastructure Configuration
 Separate from rest of configuration

 Probably in an XML file
• Can be changed using a text editor
• No changes to code needed
•  i.e. no recompile, redeploy …

 XML file choose the type of environment
• Tomcat
• Java SE for JUnit Tests
• Full Java EE

 Use PropertyPlaceholderConfigurer to set machine
specific values

6 6

Example

<bean class="....PropertyPlaceholderConfigurer">	
 <property name="location" value="db.properties" />	
</bean>	
<bean id="transactionManager"	
 class="....DataSourceTransactionManager">	
 <property name="dataSource" ref="dataSource" />	
</bean>	

<bean id="dataSource" class="....BasicDataSource"	
 destroy-method="close">	
 <property name="driverClassName"	
 value="${db.driverClassName}" />	
 <property name="url" value="${db.url}" />	
 <property name="username" value="${db.username:sa}" />	
 <property name="password" value="${db.password:}" />	
</bean>

Specific for
the type of
infrastructure:
Java SE
Doesn't use
Java EE

Specific for a machine

7 7

Alternative: context namespace
 + shorter
 - much less flexible

<context:property-placeholder location="db.properties" />	
<bean id="transactionManager"	
 class="....DataSourceTransactionManager">	
 <property name="dataSource" ref="dataSource" />	
</bean>	
<bean id="dataSource" class="....BasicDataSource"	
 destroy-method="close">	
 <property name="driverClassName"	
 value="${db.driverClassName}" />	
 <property name="url" value="${db.url}" />	
 <property name="username" value="${db.username:sa}" />	
 <property name="password" value="${db.password:}" />	
</bean>

Specific for a machine

8 8

This approach is quite powerful
 Spring Beans can be created depending on the

environment

<alias name="dataSource.${environment}"	
 alias="dataSource" />	

<bean id="dataSource.jse"	
 class="org.apache.commons.dbcp.BasicDataSource"	
 lazy-init="true" />	

<bean id="dataSource.jee"
class="org.springframework.jndi.JndiObjectFactoryBean"	
 lazy-init="true">	
 <property name="jndiName" value="jdbc/dataSource" />	
</bean>	

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Jürgen spoke about
upcoming features in
3.1 for this

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

On to the rest of the
system

11 11

Architecture
The software architecture of a program or computing
system is the

structure
or structures of the system, which comprise software
components,
the

externally visible properties
of those components, and the

relationships
between them.

 How can you define an architecture using Spring?

12 12

The example: Spring Biking!
 We need...

• Catalog of all available Mountain Bike parts and bikes
• System to configure and build custom Mountain Bikes
• System for customer data
• Track orders and repairs

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Parts of an
Architecture:
Prolog

14 14

Parts of an Architecture - Prolog
 Object: Information Hiding
 Data may not be accessed from the outside directly

15 15

Classes
 ...define types of objects
 May provide specific implementations for methods (e.g.

customize())
 White box reuse

16 16

Dependency Injection adds

 Explicit context dependencies:
setter method, constructor
parameters...
 Independent deployment:

Everything else is injected
 A way of composition:

Using the Dependency Injection
container

 However: They are fine grained,
let’s look at coarse grained
examples

17 17

Layer

 Each layer may only depend on
layers below it -> better
dependency management
 Typical technical
 Can have a Facade

18 18

Vertical Slices

 Typical business domains
 Example with Vertical Slices and Layers:

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Layers and Slices using
only Spring

20 20

The example again...

21 21

The obvious solution
 Note the additional infrastructure configuration

file (javase.xml)
 Different infrastructure for test / production / etc

easily possible

ApplicationContext applicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "tracking-gui.xml", 	
 "tracking-logic.xml", "tracking-persistence.xml",	
 "mtb-configurator-gui.xml",	
 "mtb-configurator-logic.xml",	
 "mtb-configurator-persistence.xml",	
 "mtb-catalog-gui.xml", "mtb-catalog-logic.xml",	
 "mtb-catalog-persistence.xml", "javase.xml" });	

22 22

The other obvious solution

<beans ...>	

<import resource="tracking-gui.xml" />	
<import resource="tracking-logic.xml" />	
<import resource="tracking-persistence.xml" />	
<import resource="mtb-configurator-gui.xml" />	
<import resource="mtb-configurator-logic.xml" />	
<import resource="mtb-configurator-persistence.xml" />	
<import resource="mtb-catalog-gui.xml" />	
<import resource="mtb-catalog-logic.xml" />	
<import resource="mtb-catalog-persistence.xml" />	
<import resource="javase.xml" />	

</beans>	

23 23

Obvious != good
 Each configuration file should be a layer
 But: Each Spring Bean can see each other Spring

Bean...
 ...no matter which layer they are in.

 Also: No explicit dependencies

 There is no interface for a layer – what may you use?
 Solution: Add a Facade as an interface

24 24

Facade: Example
 Configurator Logic: Logic to configure a custom

Mountain Bike, calculate price and delivery date
 Note the Facade and the poor man’s namespace

<beans ...>	
 <bean id="configurator-logic-facade"	
 class="configurator.ConfiguratorFacadeImpl">	
 <property name="deliveryCalculator"	
 ref="configurator-logic-delivery-calculator" />	
 <property name="priceCalculator"	
 ref="configurator-logic-price-calculator" />	
 </bean>	
 <bean id="configurator-logic-delivery-calculator"	
 class="configurator.DeliveryCalculatorImpl" />	
 <bean id="configurator-logic-price-calculator"	
 class="configurator.PriceCalculatorImpl” />	
</beans>	

25 25

Structured (sort of)

26 26

Same done differently
 Each components is a JAR file
 ...with its own build (Maven/ANT) script
 The JAR contains the configuration (and probably a test

configuration) in a well known place

 Use classpath* to merge them:
ApplicationContext applicationContext =  
new ClassPathXmlApplicationContext( 
 "classpath*:/config/appContext.xml");

27 27

Each JAR is a Component

Component! Component! Component!

28 28

What about layers?
 Current situation: Each component

may use each other component
(even in higher layers)

 Layer: Only components in a layer
below may be used.

 Implemented using
ApplicationContext hierarchy

 Popular example:
• ContextLoaderListener’s
ApplicationContext (lower layer)

• DispatcherServlet specific
ApplicationContext (higher layer)

29 29

Layer
ApplicationContext environmentApplicationContext =	
 new ClassPathXmlApplicationContext(
 "javase.xml");	

ApplicationContext persistenceApplicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "classpath*:*-persistence.xml" },	
 environmentApplicationContext);	

ApplicationContext logicApplicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "classpath*:*-logic.xml" },	
 persistenceApplicationContext);	

ApplicationContext guiApplicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "classpath*:*-gui.xml" },	
 logicApplicationContext);	

Logic can see persistence
But not the other way around

30 30

Layer
 Is it worth it?

• We don’t violate layering anyway, do we? ;-)
 And: What about the vertical slices?

• You care about them at least as much as you care about the layers
• Probably more: The are units of functionality i.e. what we are paid for
• Dependency management in this area might be more important

31 31

Vertical Slices
ApplicationContext environmentApplicationContext =	
 new ClassPathXmlApplicationContext("javase.xml");	

ApplicationContext catalogApplicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "classpath*:/catalog-*.xml"}, 	
 environmentApplicationContext);	

ApplicationContext configuratorApplicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "classpath*:/configurator-*.xml" },	
 catalogApplicationContext);	

ApplicationContext trackingApplicationContext =	
 new ClassPathXmlApplicationContext(
 new String[] { "classpath*:/tracking-*.xml"},	
configuratorApplicationContext);	

32 32

Vertical Slices
 Same approach as for layering
 Dependencies between Vertical Slices are enforced
 But: Now layering is not enforced
 And the infrastructure does not really fit in.

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Components using
Spring Java
Configuration

34 34

Spring Java Configuration

@Configuration	
public class ConfiguratorLogic {	

 @Bean	
 public ConfiguratorFacade configuratorFacade() {	
 ConfiguratorFacadeImpl configuratorFacade =	
 new ConfiguratorFacadeImpl();	
 // some configuration	
 return configuratorFacade; 	
 }	

 @Bean	
 public PriceCalculator priceCalculator() {	
 return new PriceCalculatorImpl();	
 }	

 @Autowired	
 private ModelDAO modelDAO;	
}	

Explicit
Dependency

Just a Factory, but:
with scopes, autowiring, configuration

for properties , ...

Strong typing, IDE support, ...

35 35

Activated with Component Scan

<beans ...>	

 <context:component-scan	
 base-package="de.spring_book.configuration" />	

</beans>	

36 36

Spring Java Configuration: Advantages
 Hierarchical decomposition is easily possible using

Java packages
 Explicit dependencies: Using @Autowired	
 Composition: Using XML and multiple Java

Configuration classes

 Best of all: No XML

 But no XML namespaces
 Feels less declarative

37 37

Used to solve Visibility Problem

@Configuration	
public class ConfiguratorLogic {	

 @Bean	
 public ConfiguratorFacade configuratorFacade() {	
 ConfiguratorFacadeImpl configuratorFacade =	
 new ConfiguratorFacadeImpl();	
 // some configuration	
 return configuratorFacade; 	
 }	

 @Bean	
 protected PriceCalculator priceCalculator() {	
 return new PriceCalculatorImpl();	
 }	

 @Autowired	
 private ModelDAO modelDAO;	
}	

This feature is gone
Please vote for
http://jira.springframework.org/browse/SPR-7170
to bring it back!

protected:
Not visible
outside this class!

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Components using
Spring Dynamic
Modules for the OSGi™
Platform / SpringSource
Application Platform

39 39

Spring Dynamic Modules 4 OSGi platforms
 OSGi offers bundles
 Bundles = JARs with special headers
 May export services and classes / interfaces
 Services can come and go at runtime
 Spring DM can export Spring Beans as OSGi services

Component!
Interfaces
Services Interfaces

Services

40 40

Components using Spring

 Each component becomes a bundle

 Facade is exported

 Other services can be imported

41 41

Spring DM example

<beans ...>	
 <osgi:service ref="facade"	
 interface="configurator.ConfiguratorFacade" />	

 <bean id="facade"	
 class="configurator.ConfiguratorFacadeImpl">	
 <property name="deliveryCalculator"	
 ref="delivery-calculator" />	
 <property name="priceCalculator"	
 ref="price-calculator" />	
 </bean>	
 <bean id="price-calculator"	
 class="configurator.PriceCalculatorImpl” />	

 <osgi:reference id="modelDao" interface="dao.ModelDAO" />	
</beans>	

Export the Façade as
OSGI service

Import an OSGi service

42 42

Spring DM: Advantages
 Facade is an OSGi Service

• only the Facade and the exported interfaces / classes can be
accessed

 Independent deployment
 Actually the focus of OSGi

 Strong modularization
 Might not be sexy but solves modularity quite nicely

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

XML vs. Annotations

44 44

XML vs Annotations?
 Traditional question: Shall I use Annotations (@Service,

@Component) or XML?

 That is actually not the question

 Shall I use code patterns (annotations, packages) or
XML to define Spring Beans?

 …as we will see later on

45 45

Traditional Answer
 XML: structure is defined in one place
 XML is more familiar to most
 Can be used for all code – not just your code
 XML namespaces allow flexible extension
 Java Config is very similar

 Annotations for frequently changing beans
 …but configuration information is distributed
 Only works for your code

46 46

What do we actually configure?

 How many implementation of ModelDAO has the system?
 Quick Type Hierarchy reveals the answer

public class OrderService {	

 private ModelDAO mtbModelDAO;	

 @Required	
 public void setMtbModelDAO(ModelDAO mtbModelDAO) {	
 this.mtbModelDAO = mtbModelDAO;	
 }	
...	
}

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Stating the obvious is
just a waste of time!

48 48

Autowiring to the rescue
 With Autowiring you is obvious configuration not

needed any more
 What do you do if >1 compatible bean exists?

 Bean can be marked as only option
• XML: primary=true
• Annotations: @Primary

 …or as no option
• XML: autowire-candidate=false
• default-autowire-candidates with a name pattern

49 49

Another explanation
 Convention over configuration school

• Ruby on Rails, Grails etc
• Why should I write anything obvious?
• And I have packages etc. to structure

 Traditional Spring school
• I want to configure it explicitly
• …and see the graph in STS etc

 I guess a project will not fail because of this decision.

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Annotations
vs.
Code Structure

51 51

Another dimension...
 So far: Decomposition into

Components
 No focus on code structure
 Also important for architectures
 So what do you do about the code

structure with Spring?

 We can define components
 But: What separates the different

types of layers?
 What services does a layer need?

52 52

AOP: Add behavior
 Add transactions to all DAOs:

 Talks about code structure
 Typically each parts of an architecture needs certain

services (transactions, security, your own service…)
 AOP adds the appropriate services to a components
 Can we use AOP ideas also to define components?

<aop:config>	
 <aop:pointcut id="daoMethods"	
 expression="execution(* dao.*.*(..))"/>	
 <aop:advisor pointcut-ref= "daoMethods"	
 advice-ref="txAdvice"/>	
</aop:config>

53 53

component-scan done differently
 Now every service implementation automatically

becomes a Spring Bean
 May use regular expressions or a superclass / interface

instead
 You still need @Autowired for dependencies

<beans ...>	
 <context:component-scan	
 base-package="com.springsource" >	
 <context:include-filter type="aspectj"	
 expression="com.springsource..service.*Impl"/>	
 </context:component-scan>	
</beans>

54 54

Naming conventions put to life
 You can create Spring Beans just by naming

conventions.
 Spring != XML
 You can add behavior using AOP pointcuts based on

the naming conventions

 Spring annotation can be used to create Spring Beans
 OK – can I also use Spring annotations to define

pointcuts?

55 55

AspectJ Pointcuts for architecture

@Aspect	
public class SystemArchitecture {	

 @Pointcut("call(* (@Service *).*(..))")	
 public void callServiceLayer() {	
 }	

 @Pointcut("call(* (@Repository *).*(..))")	
 public void callDAOLayer() {	
 }	

 @Pointcut("within(@Repository *)")	
 public void inDAOLayer() {	
 }	

}	

56 56

So...

 You can set up your system using package structures
only
 Package structure become meaningful
 You can also define pointcuts for them
• to add Aspects (“log all exceptions in services!”)
• to manage dependencies

 You can also use Spring's annotations to define
pointcuts
 ...and you don’t depend on Spring / AspectJ in the

business code at all

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

It is just about how you
want to define the
structure of your
applications!

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Spring XML
Annotations
Packages…

© 2010 SpringSource, A division of VMware. All rights reserved © 2010 SpringSource, A division of VMware. All rights reserved

Sum up

60 60

Sum Up

 Spring offers a lot of flexibility to define architectures
 XML configuration is "default" but other advanced

alternatives are available
 Spring Java Configuration is powerful and interesting
 Spring DM is very powerful and supports deployment

best
 Component scan + pointcuts offer an alternative

approach
 Your choice - decide for yourself!

61 61

 ewolff@vmware.com
 Twitter: @ewolff
 Blog: http://JandIandMe.blogspot.com

