"the BDD guy"
"agile troublemaker"

lam
developer
build primate .
. 8 years with ThoughtWorks .
agile process 20 years in IT
coach
development
consultant
organisational change
programmer. 8 months (so far!) with DRW Trading Setting-the ene
HFT machine-speed trading
. . - we do
heads-up people-speed trading
low latenc
high throughput
rrect
corred awesome UX we need
obvious
compliance . :
. data integrit
correctness
my super-powers stopped working!
engaged users who understand risk!
co-located team my problem

we already have...
autonomy & responsibilit

managment who listen

stuff happens
really is only a guideline
build trust through delive

macro-level estimation

common sense, communication, trust

process

behaviour driven from purpose behaviour should be driven from the Ul
what's the difference between this and ready?

Months to minutes
etting to production exposes flaws

ou can't release rubbish

if your users trust you
and you are responsive to feedback _best kind of user testing

and you can roll back instant!

waves of diminishing value

permanent scaffolding
so has to be good quality write good, short-lived code
painting the Forth bridge _J
integrate at Ul have narrow, collaborating services /

don't rewrite where you can revive

mocks are useful
technology

& paste is bad

airs in "shallow" silos
make design decisions with the team \ rotate pairs, avoid silos

sync up regularl

ou need analysts/testers/DBAs/etc.

user knows what they want, not how
| know it when | see _put yourself in the user's head

put yourself in a UX designer's head

. weekly themes
Planning X
"natural" plannin

Pairing in (shallow) silos

1 x recap and plannin
Stand-ups -

1 x status with sponsor

Programmers & traders on same desk

Dev-ops are critical
Co-location Own your build

) (Own your testin
Nh ed
e ° Own your analysis
Refactoring mercilessly!

\ Prove it! habitability
build, deploy, rollback
Continuous deliven
sometimes 20-30 times/day!

Automated testing but not -> 100% coverage

eventually!
Intention-revealing test names@y_
__sketc| 9 Kevlin Henney

Focus on reducing ignorance

continuous rewrite
three phases
Get comfortable with uncertaint

Application half-life

ANk ame

Deliberate discovery " "
m not!

make it yours
look with your feet

Product ownership
' fast dev/test cycle .raa\l’(ae" :ascrit
fast deploy/undeplo side-by-side
fast SCM
Anything is better than nothing
What does the user want to see?

svn -> git

Assume code won't be there in 2 months
"Onward!"

. I tead
Not your father's agile /My—

{__What happened to "people over process"?
[. even in "the enterprise"
Conclusions You can go insanely fast /—p_
but it requires discipline

Trust and collaboration trumps process but wait, that's agile!

Shoot for the stars

ou might surprise yourself

