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Azul Systems

• Design our own chips (fab'ed by TSMC)
• Build our own systems
• Targeted for running business Java
• Large core count - 54 cores per die

─ Up to 16 die are cache-coherent; 864 cores max
─ Very weak memory model meets Java spec w/fences

• “UMA” - Flat medium memory speeds
─ Business Java is irregular computation
─ Have supercomputer-level bandwidth

• Modest per-cpu caches
─ 54*(16K+16K) = 1.728Meg fast L1 cache per die
─ 6*2M = 12M L2 cache per die
─ Groups of 9 CPUs share L2
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Azul Systems

• Cores are classic in-order 64-bit 3-address RISCs
─ Core clock rate lower than X86

• Each core can sustain 2 cache-missing ops
─ Plus each L2 can sustain 24 prefetches
─ 2300+ outstanding memory references at any time

• Hardware Transactional Memory support
• Some special ops for Java

─ Read & Write barriers for GC
─ Array addressing and range checks
─ Fast virtual calls

• Targeted for thread-level parallelism in managed runtimes
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2000-2002 Business Environment

• Java is replacing COBOL (some Y2K driving)
• “App Servers” & J2EE popular – WebSphere, WebLogic, 

Jboss, “Beans”
• i.e. transactional; task-level parallelism; ThreadPools & 

Worklists; throughput-oriented computing
• Also CPUs hitting “power wall”

─ Widespread predictions of lower clk freq, more cores
─ ...2010: clk rates stalled @ 3.5GHz but 4-core is commodity

• Obvious synergy: run tasks/transactions on separate cores
• Custom machine to run Java?

─ Who buys custom hardware anymore?
─ Must have really good reasons to buy!
─ Mere 5x price/perf not nearly good enough
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What Else Can We Do?

• What else is possible besides pushing “more cores”?
• Big Business Apps require 64-bit heaps

─ Expecting Big Heaps
─ Expecting large thread counts

• GC support; read-barriers in hardware
─ Idea is 20+ yrs old
─ Hardware guys nix 65-bit ptr-tag-in-hardware

─ (65-bit memory requires expensive custom DRAMs)

• Hardware Transactional Memory is “hot” topic
─ And expecting complex task-level parallelism
─ Well understood that complex locking is a problem
─ But nobody wants to rewrite applications w/”atomic”

─ Still an open research problem
─ So support for Lock Elision using hybrid software+hardware
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Expect Locking is an Issue

• Uncontended CAS is Fast: most locks are not contended
─ (CAS: Compare-And-Swap; unit of atomic update)

• Thin lock is just “CAS + Fence”
─ CAS does not memory barrier/fence by default 
─ not the right spot for HotSpot & JMM anyways, 

so HotSpot X86 always fences as well as CAS's
─ CAS can hit-in-cache (1 clk pipelined)
─ Fence can hit-in-cache (1 clk pipelined)

• No-fence CAS
─ several hot use cases: perf counters, lock-free algorithms

• Fence flavors: ld/ld, ld/st, st/ld, st/st
• Not much ordering between mem-ops except for Fence
• Rely on Software (and not e.g. TSO) to get ordering correct
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Expect Locking is an Issue

• HTM Support from Day One
─ speculate & commit (& abort) opcodes
─ Extra tag bits in L1; nothing in L2 (hardware guys clear on that!)

• Reads & writes set “spec-read” and “spec-write” tags
• Abort if lose a tagged line out of L1

─ Software recovery; NO hardware register support

• Nothing else aborts (contrast to Sun's Rock)
─ i.e. fcn calls OK, TLB miss is OK, nested locks OK

• Routinely see XTNs of 1000's of instructions
─ But not helpful; see other talk
─ Short answer: no dusty-deck speedup from lock-elision
─ And rewriting to break data-dependency allows fine-grained locking
─ And GC is the main bottleneck, not locking
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Expect Bandwidth is an Issue

• Multi-core obvious risk: running out of bandwidth
• Streaming allocation is hard on caches

─ Support for “Just-In-Time” Zero'ing: CLZ
─ That's not impacted by frequent fencing for locks (unlike DCBZ)

─ Drove verification guys nuts
─ Lowers bandwidth: no read of dead data
─ Solid 30% reduction in bandwidth

• Stack Allocation support - “Escape Detection”
─ Much more effective than Escape Analysis in large programs

─ See IBM results from a few years ago
─ Lowers bandwidth: no write of dead data

• Looser hardware Memory Model than X86/Sparc
─ Rely on JIT to FENCE as needed
─ Makes Scaling to Big Core Counts easier
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Caches & Bandwidth

• Support lots of cache misses (hit-under-miss cores)
─ Similar to Niagra model: want to have lots of slow mem refs active
─ But different from Niagra: full core is as cheap as an SMT core

• Don't really need uber-big caches: 
─ goal is throughput not single-thread performance

• Lots of memory controllers (4 per chip)
─ Striped memory access ; avoid “hotspots”
─ Successive addresses cycle through all chips

• No fast/local vs slow/remote memory 
─ No sane memory layout to allocate “local” vs “remote”
─ 15/16ths of all memory is remote so...
─ ...local access is a loopback off & back on chip
─ Caches work great for stacks & “new” objects
─ Prefetch/CLZ for allocation
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What Else Can We Do?

• Short cache-lines; avoid false-sharing 
─ and lowers bandwidth (40% more BW for 64b lines vs 32b lines)

• Faster virtual calls
─ Avoid object header read (cache miss) in common case
─ MetaData already in ptr for GC; might as well do it for v-calls also

• Little stuff:  
─ array math & range check ops; sign-extend-then-shift-add
─ IEEE 754 subset
─ fast user-mode traps for all exceptional cases

─ Fast-path hardware, slow-path software
─ Variable-sized register windows – fast function calls

• Cooperative self-suspension
─ expecting to “Safepoint” 1000's of runnable threads
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Eye-Opening Talks w/Hardware Guys

• “I want an instruction that does X!”
─ Reply: “I can give it to you in 3 clks...
─ ...and here are the 3 1-clk instructions that do X”

• Now show that it's important to do X faster than 3 clks
• In return I got things like:
• “We can directly-execute (most) bytecodes!”

─ Don't bother; it's been tried before
─ JIT'ing is much better; make a nice JIT target instead

• “We can put in a fancy BTB to speed up virtual calls!”
─ Don't bother; software managed inline-caches 

remove nearly all true virtual calls

• Basic stuff more important to get right 
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Core Design Philosophy

• What can we do easier in hardware than in software?
─ e.g. Detection
─ HTM: detecting cache lines really hard in software
─ GC Barriers (both read & write)
─ Stack lifetime escape detection
─ Detect inline-cache predicted-virtual-call failure
─ Cache-zero does not order with memory barrier

• What can we do easier in software than in hardware?
─ e.g. all complex fixup logic
─ No register rollback on HTM fail
─ Relocating objects for GC
─ Software Inline-cache vs BTB or other virtual-call support
─ JIT vs direct bytecode execution
─ Fixup for stack-allocated objects escaping stack lifetime
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Expecting OS is an Issue

• No way customer buys funny hardware AND funny OS
• It's a Plug-n-Play Appliance – virtualize the JVM

─ Insert in datacenter network
─ Install new JDK on existing host server
─ 10mins from install to max-score JBB     ;-)
─ No OS for customer to manage
─ No visible compiler tool-chain support; no binary compatibility
─ Speed up older Sun & HP hardware in-situ

• Avoid the user-visible OS
─ No device drivers or legacy crud
─ No swap (swap is death for GC)
─ No Big Kernel Lock
─ Existing schedulers not prepared for 100's of CPUs 

and 1000's of runnable threads
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Expecting OS is an Issue

• Must have hard performance guarantees
─ Move large CPU counts between processes
─ Share unused memory for GC
─ But can demand it back to meet required performance

• Using Virtual Memory extensively for GC
─ Need bulk/fast TLB remapping & shootdown
─ Need bulk/fast virtual-to-physical remapping
─ Want VM anyways for process safety (JVMs DO crash)

• Robustness: ECC caches; chip kill; error reporting; 
OS de-configure (caches, CPUs & memory chips)

• So roll-our-own “micro” OS
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Why our own CPU?

• Can't find multi-core 64-bit w/ECC CPU design for sale
─ Must redesign L1 & LD/ST unit for HTM, ECC

─ And weak memory model for scaling
─ Adding parity to register file (and later ECC)
─ Meta-data stripping on ld/st
─ Read & write barriers, array ops, v-call support, etc
─ By now redesigning 50% of CPU

• Instruction set non-issue
─ Port gcc + JIT's to any target
─ X86 is nice (high quality ports already; nice tool chain), 

but only a 'nice'

• So roll our own CPU
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Lots of Cores

• We got lots of CPU cycles
• Anything we can do on another thread is “free”
• Big compiler thread-pools; JIT furiously in background
• Obvious background GC

─ Mutator threads do not trash own cache
─ GC threads on different L2's; trash whole clusters' cache
─ No speed-race for background GC, so running “cacheless” is OK
─ Prefetching in GC is “easy”

• Background profiling, background page zero'ing
• CPUs doing I/O can hot-spin

─ Background CPUs doing scatter/gather, TCP packet work
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Now Design It...

• Hire hardware team
─ Dot-bust puts lots of good engineers on the street

• Hire VM team, hire OS team 
• Software team starts porting gcc, HS to new chip AND
• Writing simulator
• Eventually boot OS on simulator AND
• Run HotSpot on fast X86 @ 20Mhz Vega ops

─ Runs SpecJAppserver under simulation

• Lots of cool sim tools built: data-race detector, cache miss 
rate, cache layout visualizer, trace generation, …

• Simulator MUST be run on a true multi-cpu machine
─ Data-race detection crucial
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First Cut Design: Vega 1

• 24 cores/chip
─ Grouped in 3 clusters of 8 sharing 1Meg L2 per cluster

• Each core has 16K I & 16K D cache
─ 4-way associative, short 32b line
─ Extra tag bits for HTM

• L2 cluster cache is also 4-way, 32b line
─ Risky for false-sharing of inclusive L1's
─ Limit of die-size & yield
─ Did lots of profiling here

• Clusters full interconnect for 16 chips
─ L2 miss (roughly) same cost to another L2 or to memory
─ No on-chip / off-chip penalty
─ 24 cores/chip x 16 chips = 384 cpus
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First Cut Design

• CPU is easy JIT target
─ Classic in-order 3-adr 32-reg 64-bit RISC
─ 1 hit-under-miss cache; 1-entry store “latch”
─ Masking of metadata in ptrs on loads & stores
─ Very simple FPU; no FPRs; no flags; no modes

• Background spill/fill for register stack
• Special ops almost all do minor ALU op & fast user trap:

─ array math & range check; replaces 2-5 ops each
─ V-call avoids a cache-missing load; replaces 3-4 ops
─ Read barrier: also includes TLB probe
─ Write barrier: replaces 20+ integer ops

─ But only because doing complex Stack-Escape barrier
─ Card-Mark-only generational GC would replace only 3-5 ops
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Two years later (2004)...

• First silicon comes back from TSMC
─ Not quite Dead On Arrival
─ L2 death kills most clusters
─ But a few L2's can run w/ECC & 1-way “limp home” mode
─ Register writes from even-registers “bleed” into odd registers

─ So only JIT to a subset of registers
─ Decoder treats branch offset bits as registers
─ So only branch to even addresses, etc

─ Still get a few “good” chips; must over-voltage them to make 
registers behave so chips are “cooked” to death in a month...

• So SW makes progress while HW fixes chip!
• 2nd silicon; metal-mask spin only

─ Mostly functional

• 3rd silicon: metal-mask spin only; crucial security bug-fix
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Two years later (2004)...

• Two weeks from silicon arriving to booting OS
─ One day later “hello, world”
─ Four days later “java -version”
─ All those simulator hours REALLY paid off

• Still took a year to get system robust
─ Not just metal-spins – true data-race bug fixes

─ Nobody's seen a system this O-O-O & concurrent before
─ Performance warts 

─ That 4-way inclusive L2 causing endless conflicts
─ Also heavy TLB misses
─ Random offset stacks & JIT code-cache & page coloring fixes it

─ Turns out 4-way L2 sharing 8 4-way L1's IS ok
─ Virtualization layer not virtual enough
─ And not performant enough

─ Lots of software performance fixes through the years
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First customer!

• 2004 May - 1st silicon
• 2005 Jan - 1st Beta – this is amazingly fast!!!!
• 2005 June - 1st paying customer, 

Pegasus Systems doing hotel booking
• 2005 Nov - Then British Telecom doing B2B
• Then 2006 Credit Suisse, then another big bank, then 

another, …



|    ©2010 Azul Systems, Inc.

www.azulsystems.com

 

What Works, What Doesn't

• Chip works (after 2nd metal spin)
─ Plenty of bandwidth & CPU cycles
─ Predicted cache miss rates (eventually) achieved
─ Still CPUs slower than hoped for

─ Limit of in-order low-frequency core
─ First CPU has only 1 outstanding miss

─ And many new hardware features not “turned on”

• Software works
─ Stability is 1st priority
─ So new hardware features not enabled for quite some time
─ VM team has hands full w/basic code-gen JIT quality & dataraces
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What Works, What Doesn't

• Hardware has teething problems for a year
─ Weird low-frequency DRAM bugs

─ Many issues masked by ECC
─ Forces OS error reporting to become robust early

─ DRAM screening a nightmare: need 128 good DIMMs
─ Can't get a power supply that's as reliable as claimed
─ Motherboard & I/O ASIC goes through several iterations

• OS – teething problems
─ The scheduler goes through several rounds
─ So does the I/O stack

─ Efficient virtualization is hard

• VM – read barriers
─ Must have read barriers everywhere
─ Every integration from Sun brings in new un-barriered loads
─ GC churns rapidly; exposes unprotected OOPs in VM code
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New Feature Issues

• Engineering priority debate rages over:
─ Stability
─ Turning on HTM, stack allocation (e.g. new chip features)
─ Vs compiler thread pools (startup time), 

tiered compilation (faster single-thread performance)
─ Vs generational GC (efficiency)
─ Vs GC pause-time improvements 

(e.g. concurrent SystemDictionary updates)
─ Vs fixing JDK scaling warts
─ Vs improving internal VM tool chain

• Both HTM & Stack Allocation lose for awhile
─ Lack of engineering man hours; hard problems
─ Engineers e.g. helping with sales calls
─ Customers seeing true data-races in their buggy code
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Eventually HTM Turned On

• HTM performance buggy for quite awhile
─ Mostly in “live lock”: endless retry/fail loops
─ Need to fail to OS sooner, but also retry HTM again periodically

• Turned on by default & shipping for 4 yrs now
─ Rarely helps customers; (almost) never hurts

• Stack Allocation has more issues
─ Standard case is really good: 

─ 70% of all objects in a big busy app-server get stack allocated
─ Bad cases are really bad – endless stack escapes
─ And our standard GC is also really good
─ So no drive to fix bad cases
─ Not turned on by default
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What Works

• GC works really well now
─ No sweat handling 500G heaps
─ Or 35G/sec allocation rates

• First time at a new customer
─ (1) Install
─ (2) Strip all old GC args; double default heap size
─ (3) Run – no GC problems (ever again)

• Showed off internal profiling VM tool “RTPM”
─ Customers demanded it
─ Now major selling point

• Chips, OS solid
─ Uptimes of over a year on many systems
─ Most downtimes now caused by e.g. datacenter cooling failures 

(e.g. nothing to do w/Azul)
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Real Time Profiling & Monitoring

• #2 feature (behind GC & stable performance under load)
• Live peek into JVM guts w/any web browser
• Always on, no overhead, monitoring
• Live thread stacks
• Hot Locks & blocking backtraces
• Live & Allocated Heap objects; leak detection
• GC speeds & feeds; I/O speeds & feeds; file cache
• Hot ticks; JIT'd code w/ticks
• Error reporting & exceptional conditions
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Rolling Along...

• 2006: Vega 2: 48 cpus/chip; higher clock; faster mem bus
─ Java 1.5 JVM
─ Tweaks to Read Barrier HW to support generational GC
─ Drop some less used instructions (not binary compatible)

• 2008: shipping Vega 3: 54 cores/chip; 2Meg L2; higher clk
─ Java 1.6 JVM
─ Generational GC
─ Better profiling support
─ Better HTM reporting

• Now working on 4th gen
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Some Lessons Learned

http://blogs.azulsystems.com/cliff/

• Owning whole stack allows progress:
─ JVM, OS can work around really bad HW bugs
─ Some HW bugs “fixed” forever in SW

• Some really hard HW problems “solved” in SW
─ CLZ cuts bandwidth by 1/3

• GC is “solved” w/HW Read Barrier
─ Or at least we can handle 500G heaps & 35G/sec allocation rates
─ With max pause of 10-20ms

• Simple HTM can do Lock Elision
─ But it doesn't really help scalability
─ Might help N-CAS algorithms in libraries

• Huge count of simple cores really useful in production



Thank You

WWW.AZULSYSTEMS.COM
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Business Critical Java™
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