
2010 goto;

Azul's Experiences with
Hardware / Software Co-Design

Dr. Cliff Click
Chief JVM Architect & Distinguished Engineer
blogs.azulsystems.com/cliff
Azul Systems
Oct 6, 2010

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Azul Systems

• Design our own chips (fab'ed by TSMC)
• Build our own systems
• Targeted for running business Java
• Large core count - 54 cores per die

─ Up to 16 die are cache-coherent; 864 cores max
─ Very weak memory model meets Java spec w/fences

• “UMA” - Flat medium memory speeds
─ Business Java is irregular computation
─ Have supercomputer-level bandwidth

• Modest per-cpu caches
─ 54*(16K+16K) = 1.728Meg fast L1 cache per die
─ 6*2M = 12M L2 cache per die
─ Groups of 9 CPUs share L2

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Azul Systems

• Cores are classic in-order 64-bit 3-address RISCs
─ Core clock rate lower than X86

• Each core can sustain 2 cache-missing ops
─ Plus each L2 can sustain 24 prefetches
─ 2300+ outstanding memory references at any time

• Hardware Transactional Memory support
• Some special ops for Java

─ Read & Write barriers for GC
─ Array addressing and range checks
─ Fast virtual calls

• Targeted for thread-level parallelism in managed runtimes

| ©2010 Azul Systems, Inc.

www.azulsystems.com

2000-2002 Business Environment

• Java is replacing COBOL (some Y2K driving)
• “App Servers” & J2EE popular – WebSphere, WebLogic,

Jboss, “Beans”
• i.e. transactional; task-level parallelism; ThreadPools &

Worklists; throughput-oriented computing
• Also CPUs hitting “power wall”

─ Widespread predictions of lower clk freq, more cores
─ ...2010: clk rates stalled @ 3.5GHz but 4-core is commodity

• Obvious synergy: run tasks/transactions on separate cores
• Custom machine to run Java?

─ Who buys custom hardware anymore?
─ Must have really good reasons to buy!
─ Mere 5x price/perf not nearly good enough

| ©2010 Azul Systems, Inc.

www.azulsystems.com

What Else Can We Do?

• What else is possible besides pushing “more cores”?
• Big Business Apps require 64-bit heaps

─ Expecting Big Heaps
─ Expecting large thread counts

• GC support; read-barriers in hardware
─ Idea is 20+ yrs old
─ Hardware guys nix 65-bit ptr-tag-in-hardware

─ (65-bit memory requires expensive custom DRAMs)

• Hardware Transactional Memory is “hot” topic
─ And expecting complex task-level parallelism
─ Well understood that complex locking is a problem
─ But nobody wants to rewrite applications w/”atomic”

─ Still an open research problem
─ So support for Lock Elision using hybrid software+hardware

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Expect Locking is an Issue

• Uncontended CAS is Fast: most locks are not contended
─ (CAS: Compare-And-Swap; unit of atomic update)

• Thin lock is just “CAS + Fence”
─ CAS does not memory barrier/fence by default
─ not the right spot for HotSpot & JMM anyways,

so HotSpot X86 always fences as well as CAS's
─ CAS can hit-in-cache (1 clk pipelined)
─ Fence can hit-in-cache (1 clk pipelined)

• No-fence CAS
─ several hot use cases: perf counters, lock-free algorithms

• Fence flavors: ld/ld, ld/st, st/ld, st/st
• Not much ordering between mem-ops except for Fence
• Rely on Software (and not e.g. TSO) to get ordering correct

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Expect Locking is an Issue

• HTM Support from Day One
─ speculate & commit (& abort) opcodes
─ Extra tag bits in L1; nothing in L2 (hardware guys clear on that!)

• Reads & writes set “spec-read” and “spec-write” tags
• Abort if lose a tagged line out of L1

─ Software recovery; NO hardware register support

• Nothing else aborts (contrast to Sun's Rock)
─ i.e. fcn calls OK, TLB miss is OK, nested locks OK

• Routinely see XTNs of 1000's of instructions
─ But not helpful; see other talk
─ Short answer: no dusty-deck speedup from lock-elision
─ And rewriting to break data-dependency allows fine-grained locking
─ And GC is the main bottleneck, not locking

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Expect Bandwidth is an Issue

• Multi-core obvious risk: running out of bandwidth
• Streaming allocation is hard on caches

─ Support for “Just-In-Time” Zero'ing: CLZ
─ That's not impacted by frequent fencing for locks (unlike DCBZ)

─ Drove verification guys nuts
─ Lowers bandwidth: no read of dead data
─ Solid 30% reduction in bandwidth

• Stack Allocation support - “Escape Detection”
─ Much more effective than Escape Analysis in large programs

─ See IBM results from a few years ago
─ Lowers bandwidth: no write of dead data

• Looser hardware Memory Model than X86/Sparc
─ Rely on JIT to FENCE as needed
─ Makes Scaling to Big Core Counts easier

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Caches & Bandwidth

• Support lots of cache misses (hit-under-miss cores)
─ Similar to Niagra model: want to have lots of slow mem refs active
─ But different from Niagra: full core is as cheap as an SMT core

• Don't really need uber-big caches:
─ goal is throughput not single-thread performance

• Lots of memory controllers (4 per chip)
─ Striped memory access ; avoid “hotspots”
─ Successive addresses cycle through all chips

• No fast/local vs slow/remote memory
─ No sane memory layout to allocate “local” vs “remote”
─ 15/16ths of all memory is remote so...
─ ...local access is a loopback off & back on chip
─ Caches work great for stacks & “new” objects
─ Prefetch/CLZ for allocation

| ©2010 Azul Systems, Inc.

www.azulsystems.com

What Else Can We Do?

• Short cache-lines; avoid false-sharing
─ and lowers bandwidth (40% more BW for 64b lines vs 32b lines)

• Faster virtual calls
─ Avoid object header read (cache miss) in common case
─ MetaData already in ptr for GC; might as well do it for v-calls also

• Little stuff:
─ array math & range check ops; sign-extend-then-shift-add
─ IEEE 754 subset
─ fast user-mode traps for all exceptional cases

─ Fast-path hardware, slow-path software
─ Variable-sized register windows – fast function calls

• Cooperative self-suspension
─ expecting to “Safepoint” 1000's of runnable threads

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Eye-Opening Talks w/Hardware Guys

• “I want an instruction that does X!”
─ Reply: “I can give it to you in 3 clks...
─ ...and here are the 3 1-clk instructions that do X”

• Now show that it's important to do X faster than 3 clks
• In return I got things like:
• “We can directly-execute (most) bytecodes!”

─ Don't bother; it's been tried before
─ JIT'ing is much better; make a nice JIT target instead

• “We can put in a fancy BTB to speed up virtual calls!”
─ Don't bother; software managed inline-caches

remove nearly all true virtual calls

• Basic stuff more important to get right

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Core Design Philosophy

• What can we do easier in hardware than in software?
─ e.g. Detection
─ HTM: detecting cache lines really hard in software
─ GC Barriers (both read & write)
─ Stack lifetime escape detection
─ Detect inline-cache predicted-virtual-call failure
─ Cache-zero does not order with memory barrier

• What can we do easier in software than in hardware?
─ e.g. all complex fixup logic
─ No register rollback on HTM fail
─ Relocating objects for GC
─ Software Inline-cache vs BTB or other virtual-call support
─ JIT vs direct bytecode execution
─ Fixup for stack-allocated objects escaping stack lifetime

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Expecting OS is an Issue

• No way customer buys funny hardware AND funny OS
• It's a Plug-n-Play Appliance – virtualize the JVM

─ Insert in datacenter network
─ Install new JDK on existing host server
─ 10mins from install to max-score JBB ;-)
─ No OS for customer to manage
─ No visible compiler tool-chain support; no binary compatibility
─ Speed up older Sun & HP hardware in-situ

• Avoid the user-visible OS
─ No device drivers or legacy crud
─ No swap (swap is death for GC)
─ No Big Kernel Lock
─ Existing schedulers not prepared for 100's of CPUs

and 1000's of runnable threads

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Expecting OS is an Issue

• Must have hard performance guarantees
─ Move large CPU counts between processes
─ Share unused memory for GC
─ But can demand it back to meet required performance

• Using Virtual Memory extensively for GC
─ Need bulk/fast TLB remapping & shootdown
─ Need bulk/fast virtual-to-physical remapping
─ Want VM anyways for process safety (JVMs DO crash)

• Robustness: ECC caches; chip kill; error reporting;
OS de-configure (caches, CPUs & memory chips)

• So roll-our-own “micro” OS

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Why our own CPU?

• Can't find multi-core 64-bit w/ECC CPU design for sale
─ Must redesign L1 & LD/ST unit for HTM, ECC

─ And weak memory model for scaling
─ Adding parity to register file (and later ECC)
─ Meta-data stripping on ld/st
─ Read & write barriers, array ops, v-call support, etc
─ By now redesigning 50% of CPU

• Instruction set non-issue
─ Port gcc + JIT's to any target
─ X86 is nice (high quality ports already; nice tool chain),

but only a 'nice'

• So roll our own CPU

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Lots of Cores

• We got lots of CPU cycles
• Anything we can do on another thread is “free”
• Big compiler thread-pools; JIT furiously in background
• Obvious background GC

─ Mutator threads do not trash own cache
─ GC threads on different L2's; trash whole clusters' cache
─ No speed-race for background GC, so running “cacheless” is OK
─ Prefetching in GC is “easy”

• Background profiling, background page zero'ing
• CPUs doing I/O can hot-spin

─ Background CPUs doing scatter/gather, TCP packet work

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Now Design It...

• Hire hardware team
─ Dot-bust puts lots of good engineers on the street

• Hire VM team, hire OS team
• Software team starts porting gcc, HS to new chip AND
• Writing simulator
• Eventually boot OS on simulator AND
• Run HotSpot on fast X86 @ 20Mhz Vega ops

─ Runs SpecJAppserver under simulation

• Lots of cool sim tools built: data-race detector, cache miss
rate, cache layout visualizer, trace generation, …

• Simulator MUST be run on a true multi-cpu machine
─ Data-race detection crucial

| ©2010 Azul Systems, Inc.

www.azulsystems.com

First Cut Design: Vega 1

• 24 cores/chip
─ Grouped in 3 clusters of 8 sharing 1Meg L2 per cluster

• Each core has 16K I & 16K D cache
─ 4-way associative, short 32b line
─ Extra tag bits for HTM

• L2 cluster cache is also 4-way, 32b line
─ Risky for false-sharing of inclusive L1's
─ Limit of die-size & yield
─ Did lots of profiling here

• Clusters full interconnect for 16 chips
─ L2 miss (roughly) same cost to another L2 or to memory
─ No on-chip / off-chip penalty
─ 24 cores/chip x 16 chips = 384 cpus

| ©2010 Azul Systems, Inc.

www.azulsystems.com

First Cut Design

• CPU is easy JIT target
─ Classic in-order 3-adr 32-reg 64-bit RISC
─ 1 hit-under-miss cache; 1-entry store “latch”
─ Masking of metadata in ptrs on loads & stores
─ Very simple FPU; no FPRs; no flags; no modes

• Background spill/fill for register stack
• Special ops almost all do minor ALU op & fast user trap:

─ array math & range check; replaces 2-5 ops each
─ V-call avoids a cache-missing load; replaces 3-4 ops
─ Read barrier: also includes TLB probe
─ Write barrier: replaces 20+ integer ops

─ But only because doing complex Stack-Escape barrier
─ Card-Mark-only generational GC would replace only 3-5 ops

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Two years later (2004)...

• First silicon comes back from TSMC
─ Not quite Dead On Arrival
─ L2 death kills most clusters
─ But a few L2's can run w/ECC & 1-way “limp home” mode
─ Register writes from even-registers “bleed” into odd registers

─ So only JIT to a subset of registers
─ Decoder treats branch offset bits as registers
─ So only branch to even addresses, etc

─ Still get a few “good” chips; must over-voltage them to make
registers behave so chips are “cooked” to death in a month...

• So SW makes progress while HW fixes chip!
• 2nd silicon; metal-mask spin only

─ Mostly functional

• 3rd silicon: metal-mask spin only; crucial security bug-fix

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Two years later (2004)...

• Two weeks from silicon arriving to booting OS
─ One day later “hello, world”
─ Four days later “java -version”
─ All those simulator hours REALLY paid off

• Still took a year to get system robust
─ Not just metal-spins – true data-race bug fixes

─ Nobody's seen a system this O-O-O & concurrent before
─ Performance warts

─ That 4-way inclusive L2 causing endless conflicts
─ Also heavy TLB misses
─ Random offset stacks & JIT code-cache & page coloring fixes it

─ Turns out 4-way L2 sharing 8 4-way L1's IS ok
─ Virtualization layer not virtual enough
─ And not performant enough

─ Lots of software performance fixes through the years

| ©2010 Azul Systems, Inc.

www.azulsystems.com

First customer!

• 2004 May - 1st silicon
• 2005 Jan - 1st Beta – this is amazingly fast!!!!
• 2005 June - 1st paying customer,

Pegasus Systems doing hotel booking
• 2005 Nov - Then British Telecom doing B2B
• Then 2006 Credit Suisse, then another big bank, then

another, …

| ©2010 Azul Systems, Inc.

www.azulsystems.com

What Works, What Doesn't

• Chip works (after 2nd metal spin)
─ Plenty of bandwidth & CPU cycles
─ Predicted cache miss rates (eventually) achieved
─ Still CPUs slower than hoped for

─ Limit of in-order low-frequency core
─ First CPU has only 1 outstanding miss

─ And many new hardware features not “turned on”

• Software works
─ Stability is 1st priority
─ So new hardware features not enabled for quite some time
─ VM team has hands full w/basic code-gen JIT quality & dataraces

| ©2010 Azul Systems, Inc.

www.azulsystems.com

What Works, What Doesn't

• Hardware has teething problems for a year
─ Weird low-frequency DRAM bugs

─ Many issues masked by ECC
─ Forces OS error reporting to become robust early

─ DRAM screening a nightmare: need 128 good DIMMs
─ Can't get a power supply that's as reliable as claimed
─ Motherboard & I/O ASIC goes through several iterations

• OS – teething problems
─ The scheduler goes through several rounds
─ So does the I/O stack

─ Efficient virtualization is hard

• VM – read barriers
─ Must have read barriers everywhere
─ Every integration from Sun brings in new un-barriered loads
─ GC churns rapidly; exposes unprotected OOPs in VM code

| ©2010 Azul Systems, Inc.

www.azulsystems.com

New Feature Issues

• Engineering priority debate rages over:
─ Stability
─ Turning on HTM, stack allocation (e.g. new chip features)
─ Vs compiler thread pools (startup time),

tiered compilation (faster single-thread performance)
─ Vs generational GC (efficiency)
─ Vs GC pause-time improvements

(e.g. concurrent SystemDictionary updates)
─ Vs fixing JDK scaling warts
─ Vs improving internal VM tool chain

• Both HTM & Stack Allocation lose for awhile
─ Lack of engineering man hours; hard problems
─ Engineers e.g. helping with sales calls
─ Customers seeing true data-races in their buggy code

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Eventually HTM Turned On

• HTM performance buggy for quite awhile
─ Mostly in “live lock”: endless retry/fail loops
─ Need to fail to OS sooner, but also retry HTM again periodically

• Turned on by default & shipping for 4 yrs now
─ Rarely helps customers; (almost) never hurts

• Stack Allocation has more issues
─ Standard case is really good:

─ 70% of all objects in a big busy app-server get stack allocated
─ Bad cases are really bad – endless stack escapes
─ And our standard GC is also really good
─ So no drive to fix bad cases
─ Not turned on by default

| ©2010 Azul Systems, Inc.

www.azulsystems.com

What Works

• GC works really well now
─ No sweat handling 500G heaps
─ Or 35G/sec allocation rates

• First time at a new customer
─ (1) Install
─ (2) Strip all old GC args; double default heap size
─ (3) Run – no GC problems (ever again)

• Showed off internal profiling VM tool “RTPM”
─ Customers demanded it
─ Now major selling point

• Chips, OS solid
─ Uptimes of over a year on many systems
─ Most downtimes now caused by e.g. datacenter cooling failures

(e.g. nothing to do w/Azul)

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Real Time Profiling & Monitoring

• #2 feature (behind GC & stable performance under load)
• Live peek into JVM guts w/any web browser
• Always on, no overhead, monitoring
• Live thread stacks
• Hot Locks & blocking backtraces
• Live & Allocated Heap objects; leak detection
• GC speeds & feeds; I/O speeds & feeds; file cache
• Hot ticks; JIT'd code w/ticks
• Error reporting & exceptional conditions

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Rolling Along...

• 2006: Vega 2: 48 cpus/chip; higher clock; faster mem bus
─ Java 1.5 JVM
─ Tweaks to Read Barrier HW to support generational GC
─ Drop some less used instructions (not binary compatible)

• 2008: shipping Vega 3: 54 cores/chip; 2Meg L2; higher clk
─ Java 1.6 JVM
─ Generational GC
─ Better profiling support
─ Better HTM reporting

• Now working on 4th gen

| ©2010 Azul Systems, Inc.

www.azulsystems.com

Some Lessons Learned

http://blogs.azulsystems.com/cliff/

• Owning whole stack allows progress:
─ JVM, OS can work around really bad HW bugs
─ Some HW bugs “fixed” forever in SW

• Some really hard HW problems “solved” in SW
─ CLZ cuts bandwidth by 1/3

• GC is “solved” w/HW Read Barrier
─ Or at least we can handle 500G heaps & 35G/sec allocation rates
─ With max pause of 10-20ms

• Simple HTM can do Lock Elision
─ But it doesn't really help scalability
─ Might help N-CAS algorithms in libraries

• Huge count of simple cores really useful in production

Thank You

WWW.AZULSYSTEMS.COM

#1 Platform for
Business Critical Java™

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

