
<Insert Picture Here>

One VM, Many Languages
Brian Goetz
Java Language Architect, Oracle Corporation

Monday, October 4, 2010

2

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

Monday, October 4, 2010

3

Overview

The Java Virtual Machine (JVM) has, in large part, been
the engine behind the success of the Java
programming language
• The JVM is undergoing a transformation: to become a

Universal VM
• In years to come, it will power the success of other

languages too

Monday, October 4, 2010

4

“Java is slow because it runs on a
VM”
• Early

implementations of
the
JVM executed
bytecode with an
interpreter [slow]

Monday, October 4, 2010

5

“Java is fast because it runs on a VM”

• Major breakthrough was the
advent of “Just In Time”
compilers [fast]
– Compile from bytecode to

machine code at runtime
– Optimize using information

available at runtime only
• Simplifies static compilers
– javac and ecj generate “dumb”

bytecode and trust the JVM to
optimize

– Optimization is real, but invisible

Monday, October 4, 2010

6

Optimizations are universal

• Optimizations work on bytecode in .class files
• A compiler for any language – not just Java – can emit

a .class file
• All languages can benefit from dynamic compilation

and optimizations like inlining

Monday, October 4, 2010

7

HotSpot optimizations

compiler tactics
 delayed compilation
 Tiered compilation
 on-stack replacement
 delayed reoptimization
 program dependence graph representation
 static single assignment representation
proof-based techniques
 exact type inference
 memory value inference
 memory value tracking
 constant folding
 reassociation
 operator strength reduction
 null check elimination
 type test strength reduction
 type test elimination
 algebraic simplification
 common subexpression elimination
 integer range typing
flow-sensitive rewrites
 conditional constant propagation
 dominating test detection
 flow-carried type narrowing
 dead code elimination

language-specific techniques
 class hierarchy analysis
 devirtualization
 symbolic constant propagation
 autobox elimination
 escape analysis
 lock elision
 lock fusion
 de-reflection
speculative (profile-based) techniques
 optimistic nullness assertions
 optimistic type assertions
 optimistic type strengthening
 optimistic array length strengthening
 untaken branch pruning
 optimistic N-morphic inlining
 branch frequency prediction
 call frequency prediction
memory and placement transformation
 expression hoisting
 expression sinking
 redundant store elimination
 adjacent store fusion
 card-mark elimination
 merge-point splitting

loop transformations
 loop unrolling
 loop peeling
 safepoint elimination
 iteration range splitting
 range check elimination
 loop vectorization
global code shaping
 inlining (graph integration)
 global code motion
 heat-based code layout
 switch balancing
 throw inlining
control flow graph transformation
 local code scheduling
 local code bundling
 delay slot filling
 graph-coloring register allocation
 linear scan register allocation
 live range splitting
 copy coalescing
 constant splitting
 copy removal
 address mode matching
 instruction peepholing
 DFA-based code generator

Monday, October 4, 2010

8

Inlining is the uber-optimization

• Speeding up method calls is the big win
• For a given method call, try to predict which method

should be called
• Numerous techniques available
– Devirtualization (Prove there's only one target method)
– Monomorphic inline caching
– Profile-driven inline caching

• Goal is inlining: copying called method's body into
caller
– Gives more code for the optimizer to chew on

Monday, October 4, 2010

9

 public interface FooHolder<T> {
 public T getFoo();
 }

 public class MyHolder<T> implements FooHolder<T> {
 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }
 }

Inlining: Example

Monday, October 4, 2010

10

 public interface FooHolder<T> {
 public T getFoo();
 }

 public class MyHolder<T> implements FooHolder<T> {
 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }
 }
 ...
 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
 }

Inlining: Example

Monday, October 4, 2010

11

 public interface FooHolder<T> {
 public T getFoo();
 }

 public class MyHolder<T> implements FooHolder<T> {
 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }
 }
 ...
 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
 }
 ...
 public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 return getString(myFooHolder);
 }

Inlining: Example

Monday, October 4, 2010

12

 public interface FooHolder<T> {
 public T getFoo();
 }

 public class MyHolder<T> implements FooHolder<T> {
 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }
 }
 ...
 public String getString(FooHolder<String> holder) {
 if (holder == null)
 throw new NullPointerException("You dummy.");
 else
 return holder.getFoo();
 }
 ...
 public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 return getString(myFooHolder);
 }

Inlining: Example Step 1
Inline getString()

Monday, October 4, 2010

13

 public interface FooHolder<T> {
 public T getFoo();
 }

 public class MyHolder<T> implements FooHolder<T> {
 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }
 }
 ...
 public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 if (myFooHolder == null)
 throw new NullPointerException("You dummy.");
 else
 return myFooHolder.getFoo();
 }

Inlining: Example

Monday, October 4, 2010

14

 public interface FooHolder<T> {
 public T getFoo();
 }

 public class MyHolder<T> implements FooHolder<T> {
 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }
 }
 ...
 public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 if (myFooHolder == null)
 throw new NullPointerException("You dummy.");
 else
 return myFooHolder.getFoo();
 }

Inlining: Example Step 2
Dead code

Monday, October 4, 2010

15

 public interface FooHolder<T> {
 public T getFoo();
 }

 public class MyHolder<T> implements FooHolder<T> {
 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }
 }
 ...
 public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 if (myFooHolder == null)
 throw new NullPointerException("You dummy.");
 else
 return myFooHolder.getFoo();
 }

Inlining: Example

Monday, October 4, 2010

16

 public interface FooHolder<T> {
 public T getFoo();
 }

 public class MyHolder<T> implements FooHolder<T> {
 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }
 }
 ...
 public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 return myFooHolder.getFoo();
 }

Inlining: Example
Step 3

Type sharpen and inlining

Monday, October 4, 2010

17

 public interface FooHolder<T> {
 public T getFoo();
 }

 public class MyHolder<T> implements FooHolder<T> {
 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }
 }
 ...
 public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 return myFooHolder.foo;
 }

Inlining: Example

Monday, October 4, 2010

18

 public interface FooHolder<T> {
 public T getFoo();
 }

 public class MyHolder<T> implements FooHolder<T> {
 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }
 }
 ...
 public String foo(String x) {
 FooHolder<String> myFooHolder = new MyHolder<String>(x);
 return myFooHolder.foo;
 }

Inlining: Example Step 4
Escape analysis

Monday, October 4, 2010

19

 public interface FooHolder<T> {
 public T getFoo();
 }

 public class MyHolder<T> implements FooHolder<T> {
 private final T foo;

 public MyHolder(T foo) { this.foo = foo; }

 public T getFoo() { return foo; }
 }
 ...
 public String foo(String x) {
 return x;
 }

Inlining: Example

Monday, October 4, 2010

20

Inlining is the uber-optimization

• Each time we inlined, we exposed information from
the outer scope
• Which could be used to optimize the inner scope

further, now that there is more information available
• Code often gets smaller and faster at the same time
• HotSpot works hard to inline everything it can
• Will apply “inline caching” when it can't predict inlining

perfectly
• Will inline speculatively based on current loaded class

hierarchy

Monday, October 4, 2010

21

Languages ♥ Virtual Machines

• Programming languages need runtime support
– Memory management / Garbage collection
– Concurrency control
– Security
– Reflection
– Debugging / Profiling
– Standard libraries (collections, database, XML, etc)

• Traditionally, language implementers coded these
features themselves
• Many implementers now choose to target a VM to

reuse infrastructure

Monday, October 4, 2010

22

The Great Ruby Shootout 2008

2.00
means
“twice

as fast”

0.50
means

“half the
speed”

http://antoniocangiano.com/2008/12/09/the-great-ruby-shootout-
december-2008/Monday, October 4, 2010

23

Benefits for the developer

• Choice
– Use the right tool for the right job, while sharing infrastructure
– Unit tests in Scala,

 Business logic in Java,
 Web app in JRuby,
 Config scripts in Jython...

– ...with the same IDE, same debugger, same JVM
• Extensibility
– Extend a Java application with a Groovy plugin

• Manageability
– Run RubyOnRails with JRuby on a managed JVM

Monday, October 4, 2010

24

Trends in programming languages

Monday, October 4, 2010

25

Different kinds of languages

Monday, October 4, 2010

26

Fibonacci in Java and Ruby

int fib(int n) {
 if (n<2)
 return n;
 else
 return fib(n-1)+fib

(n-2);
}

def fib(n) {
 if n<2
 n
 else
 fib(n-1)+fib(n-2)
 end
}

Monday, October 4, 2010

27

Not as similar as they look

• Data types
– Not just char/int/long/double and java.lang.Object

• Method call
– Not just Java-style overloading and overriding

• Control structures
– Not just 'for', 'while', 'break', 'continue'

• Collections
– Not just java.util.*

Monday, October 4, 2010

28

Reality is a simulation

Primitive types+ops
Object model

Memory model
Dynamic linking
Access control

GC
Unicode

Checked exceptions
Generics
Enums

Overloading
Constructor chaining

Program analysis
Primitive types+ops

Object model
Memory model
Dynamic linking
Access control

GC
Unicode

Java language

fictions

Java VM

features

Open classes
Dynamic typing

'eval'
Closures
Mixins

Regular expressions
Primitive types+ops

Object model
Memory model
Dynamic linking
Access control

GC
Unicode

Ruby language

fictions

Monday, October 4, 2010

29

Towards a Universal VM

• Simulating language features at runtime is slow
• When multiple languages target a VM, common

issues quickly become apparent
• With expertise and taste, the JVM can grow to benefit

all languages
– Adding a little more gains us a lot!
– Each additional “stretch” helps many more languages

Monday, October 4, 2010

30

Java VM Specification, 1997

• The Java Virtual Machine knows nothing about the Java
programming language, only of a particular binary format, the
class file format.

• A class file contains Java Virtual Machine instructions (or
bytecodes) and a symbol table, as well as other ancillary
information.

• Any language with functionality that can be expressed in terms
of a valid class file can be hosted by the Java virtual machine.

• Attracted by a generally available, machine-independent
platform, implementors of other languages are turning to the
Java Virtual Machine as a delivery vehicle for their languages.

• In the future, we will consider bounded extensions to the Java
Virtual Machine to provide better support for other languages.

Monday, October 4, 2010

31

JVM extensions for other languages

Monday, October 4, 2010

31

JVM extensions for other languages

• There’s no shortage of JVM feature suggestions

Monday, October 4, 2010

31

JVM extensions for other languages

• There’s no shortage of JVM feature suggestions

– Dynamic method linkage (non-Java method lookup)

Monday, October 4, 2010

31

JVM extensions for other languages

• There’s no shortage of JVM feature suggestions

– Dynamic method linkage (non-Java method lookup)
– Tail calls (more dynamic control flow)

Monday, October 4, 2010

31

JVM extensions for other languages

• There’s no shortage of JVM feature suggestions

– Dynamic method linkage (non-Java method lookup)
– Tail calls (more dynamic control flow)
– Continuations (fibers vs. threads, mobile vs. bound, …)

Monday, October 4, 2010

31

JVM extensions for other languages

• There’s no shortage of JVM feature suggestions

– Dynamic method linkage (non-Java method lookup)
– Tail calls (more dynamic control flow)
– Continuations (fibers vs. threads, mobile vs. bound, …)
– Tuples (a.k.a. value types, structs)

Monday, October 4, 2010

31

JVM extensions for other languages

• There’s no shortage of JVM feature suggestions

– Dynamic method linkage (non-Java method lookup)
– Tail calls (more dynamic control flow)
– Continuations (fibers vs. threads, mobile vs. bound, …)
– Tuples (a.k.a. value types, structs)
– Open classes (e.g., for “monkey patching”)

Monday, October 4, 2010

31

JVM extensions for other languages

• There’s no shortage of JVM feature suggestions

– Dynamic method linkage (non-Java method lookup)
– Tail calls (more dynamic control flow)
– Continuations (fibers vs. threads, mobile vs. bound, …)
– Tuples (a.k.a. value types, structs)
– Open classes (e.g., for “monkey patching”)
– Interface injection (making new views of old types)

Monday, October 4, 2010

31

JVM extensions for other languages

• There’s no shortage of JVM feature suggestions

– Dynamic method linkage (non-Java method lookup)
– Tail calls (more dynamic control flow)
– Continuations (fibers vs. threads, mobile vs. bound, …)
– Tuples (a.k.a. value types, structs)
– Open classes (e.g., for “monkey patching”)
– Interface injection (making new views of old types)
– Tagged fixnums (autoboxing without tears)

Monday, October 4, 2010

32

Monday, October 4, 2010

32

If we could make one change
to the JVM to improve life for
dynamic languages, what
would it be?

Monday, October 4, 2010

32

If we could make one change
to the JVM to improve life for
dynamic languages, what
would it be?

More flexible method calls

Monday, October 4, 2010

33

More flexible method calls

Monday, October 4, 2010

33

More flexible method calls

• The invokevirtual bytecode performs a method call

Monday, October 4, 2010

33

More flexible method calls

• The invokevirtual bytecode performs a method call
• Its behavior is Java-like and fixed

Monday, October 4, 2010

33

More flexible method calls

• The invokevirtual bytecode performs a method call
• Its behavior is Java-like and fixed
• Other languages need custom behavior

Monday, October 4, 2010

33

More flexible method calls

• The invokevirtual bytecode performs a method call
• Its behavior is Java-like and fixed
• Other languages need custom behavior
• Idea: let some “language logic” determine the

behavior of a JVM method call

Monday, October 4, 2010

33

More flexible method calls

• The invokevirtual bytecode performs a method call
• Its behavior is Java-like and fixed
• Other languages need custom behavior
• Idea: let some “language logic” determine the

behavior of a JVM method call
• Invention: the invokedynamic bytecode

– VM asks some “language logic” how to call a method
– Language logic gives an answer, and decides if it needs to

stay in the loop

Monday, October 4, 2010

34

Caller Method
invokevirtual

Virtual method call in Java

Monday, October 4, 2010

35

Caller Method

Dynamic method call

invokedynamic

Monday, October 4, 2010

35

Caller Method

Language
logic

Dynamic method call

invokedynamic

Monday, October 4, 2010

35

Caller Method

Language
logic

invokevirtual

Dynamic method call

invokedynamic

Monday, October 4, 2010

35

Caller Method

Language
logic

invokevirtual

Check which methods are available now in each class [open classes]

Check the dynamic types of arguments to the method [multimethods]

Rearrange and inject arguments [optional and default parameters]

Convert numbers to a different representation [fixnums]

Dynamic method call

invokedynamic

Monday, October 4, 2010

36

JRuby caller

Method

JRuby logic
invokedynamic

invokevirtual

Jython logic

Groovy logic
Jython caller

Groovy
caller

Monday, October 4, 2010

37

Language logic is only needed...

*†‡

Monday, October 4, 2010

37

Language logic is only needed...

*†‡

Monday, October 4, 2010

37

Language logic is only needed...

ONCE *†‡

Monday, October 4, 2010

37

Language logic is only needed...

ONCE *†‡

Monday, October 4, 2010

37

Language logic is only needed...

ONCE
* Until a different object is assigned to the receiver variable

† Until the receiver's dynamic type is changed

‡ Until the arguments' dynamic types are changed

*†‡

Monday, October 4, 2010

38

The deal with method calls (in one slide)

4
Monday, October 4, 2010

38

The deal with method calls (in one slide)

• Calling a method is cheap (VMs can even inline!)

4
Monday, October 4, 2010

38

The deal with method calls (in one slide)

• Calling a method is cheap (VMs can even inline!)
• Selecting the right target method can be costly

– Static languages do most of their method selection at
compile time (e.g., System.out.println(x))
Single-dispatch on receiver type is left for runtime

– Dynamic languages do almost none at compile-time
Don’t re-do method selection for every single invocation!

4
Monday, October 4, 2010

38

The deal with method calls (in one slide)

• Calling a method is cheap (VMs can even inline!)
• Selecting the right target method can be costly

– Static languages do most of their method selection at
compile time (e.g., System.out.println(x))
Single-dispatch on receiver type is left for runtime

– Dynamic languages do almost none at compile-time
Don’t re-do method selection for every single invocation!

• Each language has its own ideas about linkage
– The VM enforces static rules of naming and linkage

Language runtimes want to decide (& re-decide) linkage

4
Monday, October 4, 2010

39

What’s in a method call? A sequence of tasks

5
Monday, October 4, 2010

39

What’s in a method call? A sequence of tasks

• Naming — using a symbolic name

5
Monday, October 4, 2010

39

What’s in a method call? A sequence of tasks

• Naming — using a symbolic name
• Selecting — deciding which one to call

5
Monday, October 4, 2010

39

What’s in a method call? A sequence of tasks

• Naming — using a symbolic name
• Selecting — deciding which one to call
• Adapting — agreeing on calling conventions

5
Monday, October 4, 2010

39

What’s in a method call? A sequence of tasks

• Naming — using a symbolic name
• Selecting — deciding which one to call
• Adapting — agreeing on calling conventions

• Calling – finally, a parameterized control transfer

5
Monday, October 4, 2010

40

What’s in a method call? Connection from A to B

6
Monday, October 4, 2010

40

What’s in a method call? Connection from A to B

• Including naming, linking, selecting, adapting:

6
Monday, October 4, 2010

40

What’s in a method call? Connection from A to B

• Including naming, linking, selecting, adapting:
• …callee B might be known to caller A only by a name

6
Monday, October 4, 2010

40

What’s in a method call? Connection from A to B

• Including naming, linking, selecting, adapting:
• …callee B might be known to caller A only by a name
• …and A and B might be far apart

6
Monday, October 4, 2010

40

What’s in a method call? Connection from A to B

• Including naming, linking, selecting, adapting:
• …callee B might be known to caller A only by a name
• …and A and B might be far apart
• …and B might depend on arguments passed by A

6
Monday, October 4, 2010

40

What’s in a method call? Connection from A to B

• Including naming, linking, selecting, adapting:
• …callee B might be known to caller A only by a name
• …and A and B might be far apart
• …and B might depend on arguments passed by A
• …and a correct call to B might require adaptations

6
Monday, October 4, 2010

40

What’s in a method call? Connection from A to B

• Including naming, linking, selecting, adapting:
• …callee B might be known to caller A only by a name
• …and A and B might be far apart
• …and B might depend on arguments passed by A
• …and a correct call to B might require adaptations

• After everything is decided, A jumps to B’s code.

6
Monday, October 4, 2010

41

What’s in a method call? Several phases

• Source code: What the language says
• Bytecode: What’s (statically) in the classfile

Monday, October 4, 2010

41

What’s in a method call? Several phases

• Source code: What the language says
• Bytecode: What’s (statically) in the classfile

• Linking: One-time setup done by the JVM

Monday, October 4, 2010

41

What’s in a method call? Several phases

• Source code: What the language says
• Bytecode: What’s (statically) in the classfile

• Linking: One-time setup done by the JVM

• Executing: What happens on every call

Monday, October 4, 2010

42

Phases versus tasks (before invokedynamic)
Source
code

Bytecode Linking Executing

Naming

Selecting

Adapting

Calling

Identifiers Utf8
constants

JVM
“dictionary”

Scopes Class
names

Loaded
classes

V-table
lookup

Argument
conversion

C2I / I2C
adapters

Receiver
narrowing

Jump with
arguments

Monday, October 4, 2010

42

Phases versus tasks (before invokedynamic)
Source
code

Bytecode Linking Executing

Naming

Selecting

Adapting

Calling

Identifiers Utf8
constants

JVM
“dictionary”

Scopes Class
names

Loaded
classes

V-table
lookup

Argument
conversion

C2I / I2C
adapters

Receiver
narrowing

Jump with
arguments

Monday, October 4, 2010

43

Invokedynamic removes some limits

Monday, October 4, 2010

43

Invokedynamic removes some limits

• Method naming is not limited to Java APIs

Monday, October 4, 2010

43

Invokedynamic removes some limits

• Method naming is not limited to Java APIs
• Method lookup is not limited to class scopes

– Completely generalized via Bootstrap Methods

Monday, October 4, 2010

43

Invokedynamic removes some limits

• Method naming is not limited to Java APIs
• Method lookup is not limited to class scopes

– Completely generalized via Bootstrap Methods
• Invocation targets can be mixed and matched

– Adapter method handles can transform arguments
– Bound method handles can close over “live” data

Monday, October 4, 2010

44

Phases versus tasks (with invokedynamic)
Source
code

Bytecode Linking Executing

Naming

Selecting

Adapting

Calling

∞ ∞ ∞ ∞

∞ Bootstrap
methods

Bootstrap
method call ∞

∞ Method
handles ∞

Jump with
arguments

Monday, October 4, 2010

44

Phases versus tasks (with invokedynamic)
Source
code

Bytecode Linking Executing

Naming

Selecting

Adapting

Calling

∞ ∞ ∞ ∞

∞ Bootstrap
methods

Bootstrap
method call ∞

∞ Method
handles ∞

Jump with
arguments

Monday, October 4, 2010

45

Phases versus tasks (before invokedynamic)

Monday, October 4, 2010

46

Phases versus tasks (after invokedynamic)

Monday, October 4, 2010

47

Method handles and closures

Monday, October 4, 2010

47

Method handles and closures

• We are working on closures in Java
– More flexible, less bulky than anonymous inner classes

Monday, October 4, 2010

47

Method handles and closures

• We are working on closures in Java
– More flexible, less bulky than anonymous inner classes

• What’s in a closure?
– A small bit of code specified in an expression
– Optionally, some data associated with it at creation
– A target (SAM) type specifying how the closure will be used

Monday, October 4, 2010

47

Method handles and closures

• We are working on closures in Java
– More flexible, less bulky than anonymous inner classes

• What’s in a closure?
– A small bit of code specified in an expression
– Optionally, some data associated with it at creation
– A target (SAM) type specifying how the closure will be used

• What does the JVM see?
– A method handle constant specifying the raw behavior

(Typically a synthetic private, but may be any method.)
– Optionally, a “bind” operation on the method handle
– A “SAM conversion” operation to convert to the target type

Monday, October 4, 2010

48

Invokedynamic and closures?

Monday, October 4, 2010

48

Invokedynamic and closures?

• An instructive possibility...

Monday, October 4, 2010

48

Invokedynamic and closures?

• An instructive possibility...

1. Compile the data type and target types as Bootstrap
Method parameters.

Monday, October 4, 2010

48

Invokedynamic and closures?

• An instructive possibility...

1. Compile the data type and target types as Bootstrap
Method parameters.

2. When the call is linked, a runtime library selects an
efficient representation.

Monday, October 4, 2010

48

Invokedynamic and closures?

• An instructive possibility...

1. Compile the data type and target types as Bootstrap
Method parameters.

2. When the call is linked, a runtime library selects an
efficient representation.

3. The call is bound to a method handle which creates
the needed closure.

Monday, October 4, 2010

48

Invokedynamic and closures?

• An instructive possibility...

1. Compile the data type and target types as Bootstrap
Method parameters.

2. When the call is linked, a runtime library selects an
efficient representation.

3. The call is bound to a method handle which creates
the needed closure.

4. When the call is executed, data parameters (if any)
are passed on the stack.

Monday, October 4, 2010

48

Invokedynamic and closures?

• An instructive possibility...

1. Compile the data type and target types as Bootstrap
Method parameters.

2. When the call is linked, a runtime library selects an
efficient representation.

3. The call is bound to a method handle which creates
the needed closure.

4. When the call is executed, data parameters (if any)
are passed on the stack.

5. The method handle folds it all together, optimally.

Monday, October 4, 2010

49

JSR 292 design news

Monday, October 4, 2010

49

JSR 292 design news

• Method handle constants
– Allows bytecode to work with method handles, as directly as

it works with methods themselves
– Initially motivated by thinking about closure compilation

Monday, October 4, 2010

49

JSR 292 design news

• Method handle constants
– Allows bytecode to work with method handles, as directly as

it works with methods themselves
– Initially motivated by thinking about closure compilation

• Bootstrap Methods localized to invokedynamic calls
– Allows dynamic call sites to be woven independently

Monday, October 4, 2010

49

JSR 292 design news

• Method handle constants
– Allows bytecode to work with method handles, as directly as

it works with methods themselves
– Initially motivated by thinking about closure compilation

• Bootstrap Methods localized to invokedynamic calls
– Allows dynamic call sites to be woven independently

• Class-specific values (for metaclass caching)
– ThreadLocal : Threads :: ClassValue : Class

Monday, October 4, 2010

49

JSR 292 design news

• Method handle constants
– Allows bytecode to work with method handles, as directly as

it works with methods themselves
– Initially motivated by thinking about closure compilation

• Bootstrap Methods localized to invokedynamic calls
– Allows dynamic call sites to be woven independently

• Class-specific values (for metaclass caching)
– ThreadLocal : Threads :: ClassValue : Class

• “Live” constants
– Generalization of Class and Method Handle constants
– Linked into the constant pool by a user-specified BSM

Monday, October 4, 2010

50

What’s next? A standard

Monday, October 4, 2010

50

What’s next? A standard

• Reference Implementation driven as part of JDK 7

Monday, October 4, 2010

50

What’s next? A standard

• Reference Implementation driven as part of JDK 7
• Experiments have been done with it:

– JRuby retargeting (Charlie Nutter)
– Rhino (JavaScript) investigation
– “PHP Reboot” project (Rémi Forax)

Monday, October 4, 2010

50

What’s next? A standard

• Reference Implementation driven as part of JDK 7
• Experiments have been done with it:

– JRuby retargeting (Charlie Nutter)
– Rhino (JavaScript) investigation
– “PHP Reboot” project (Rémi Forax)

• Expert Group has been actively discussing the spec.

Monday, October 4, 2010

50

What’s next? A standard

• Reference Implementation driven as part of JDK 7
• Experiments have been done with it:

– JRuby retargeting (Charlie Nutter)
– Rhino (JavaScript) investigation
– “PHP Reboot” project (Rémi Forax)

• Expert Group has been actively discussing the spec.
• Nearing a second draft specification (this year)

Monday, October 4, 2010

51

What’s next? Da Vinci projects

Monday, October 4, 2010

51

What’s next? Da Vinci projects

• The Da Vinci Machine Project continues

Monday, October 4, 2010

51

What’s next? Da Vinci projects

• The Da Vinci Machine Project continues
• Community contributions:

– Continuations
– Coroutines
– Hotswap
– Tailcalls
– Interface injection

Monday, October 4, 2010

51

What’s next? Da Vinci projects

• The Da Vinci Machine Project continues
• Community contributions:

– Continuations
– Coroutines
– Hotswap
– Tailcalls
– Interface injection

• Gleams in our eyes:
– Object “species” (for splitting classes more finely)
– Tuples and value types (for using registers more efficiently)
– Advanced array types (for using memory more efficiently)

Monday, October 4, 2010

52

What’s next? All of the above, fast and light

Monday, October 4, 2010

52

What’s next? All of the above, fast and light

• Architecture ≠ optimization

Monday, October 4, 2010

52

What’s next? All of the above, fast and light

• Architecture ≠ optimization
• Architecture → enables optimization

Monday, October 4, 2010

52

What’s next? All of the above, fast and light

• Architecture ≠ optimization
• Architecture → enables optimization

• Efficient method handle creation

Monday, October 4, 2010

52

What’s next? All of the above, fast and light

• Architecture ≠ optimization
• Architecture → enables optimization

• Efficient method handle creation
• Compact representations (fused MH/SAM nodes)

Monday, October 4, 2010

52

What’s next? All of the above, fast and light

• Architecture ≠ optimization
• Architecture → enables optimization

• Efficient method handle creation
• Compact representations (fused MH/SAM nodes)
• Memory-less representations

Monday, October 4, 2010

53

“Fixnums” – tagged immediate pseudo-pointers

Monday, October 4, 2010

53

“Fixnums” – tagged immediate pseudo-pointers

• In Java, primitives can be “autoboxed”
– This convenience was added in JDK 5

Monday, October 4, 2010

53

“Fixnums” – tagged immediate pseudo-pointers

• In Java, primitives can be “autoboxed”
– This convenience was added in JDK 5

• Boxing is expensive and tricky to optimize
– In general it requires building a whole “wrapper” object

Monday, October 4, 2010

53

“Fixnums” – tagged immediate pseudo-pointers

• In Java, primitives can be “autoboxed”
– This convenience was added in JDK 5

• Boxing is expensive and tricky to optimize
– In general it requires building a whole “wrapper” object

• Some older systems (Lisp, Smalltalk) are smarter
– They use the object pointer itself to store the primitive value
– The pointer is “tagged” to distinguish it from a real address

Monday, October 4, 2010

54

A list of integer values (before fixnums)

Monday, October 4, 2010

55

A list of integer values (after fixnums)

Monday, October 4, 2010

56

Fixnums in the Java VM

Monday, October 4, 2010

56

Fixnums in the Java VM

• The JVM can also do the “fixnum” trick

Monday, October 4, 2010

56

Fixnums in the Java VM

• The JVM can also do the “fixnum” trick
• This will make Integer / int conversions very cheap

Monday, October 4, 2010

56

Fixnums in the Java VM

• The JVM can also do the “fixnum” trick
• This will make Integer / int conversions very cheap
• No need for special “int” container types

– Filter, Predicate vs. intFilter, intPredicate, etc.

Monday, October 4, 2010

56

Fixnums in the Java VM

• The JVM can also do the “fixnum” trick
• This will make Integer / int conversions very cheap
• No need for special “int” container types

– Filter, Predicate vs. intFilter, intPredicate, etc.
• One catch: Doesn’t work well for “double” values

Monday, October 4, 2010

57

Implications for languages

Monday, October 4, 2010

57

Implications for languages

• Bootstrap Methods — new link-time hook
– helps with call site management (JRuby, JavaScript)
– can help with one-time representation setup (closures)

Monday, October 4, 2010

57

Implications for languages

• Bootstrap Methods — new link-time hook
– helps with call site management (JRuby, JavaScript)
– can help with one-time representation setup (closures)

• Method Handles — lower-level access to methods
– faster and more direct than reflection
– more compact than inner classes

Monday, October 4, 2010

57

Implications for languages

• Bootstrap Methods — new link-time hook
– helps with call site management (JRuby, JavaScript)
– can help with one-time representation setup (closures)

• Method Handles — lower-level access to methods
– faster and more direct than reflection
– more compact than inner classes

• SAM conversion — bridge to higher-level APIs
– no more spinning of 1000’s of tiny inner classes (Scala)

Monday, October 4, 2010

57

Implications for languages

• Bootstrap Methods — new link-time hook
– helps with call site management (JRuby, JavaScript)
– can help with one-time representation setup (closures)

• Method Handles — lower-level access to methods
– faster and more direct than reflection
– more compact than inner classes

• SAM conversion — bridge to higher-level APIs
– no more spinning of 1000’s of tiny inner classes (Scala)

• Class values — direct annotation of arb. classes
– no more fumbling with class-keyed hash tables (Groovy)

Monday, October 4, 2010

57

Implications for languages

• Bootstrap Methods — new link-time hook
– helps with call site management (JRuby, JavaScript)
– can help with one-time representation setup (closures)

• Method Handles — lower-level access to methods
– faster and more direct than reflection
– more compact than inner classes

• SAM conversion — bridge to higher-level APIs
– no more spinning of 1000’s of tiny inner classes (Scala)

• Class values — direct annotation of arb. classes
– no more fumbling with class-keyed hash tables (Groovy)

• Fixnums — Less pain dealing with primitives

Monday, October 4, 2010

58

To find out more...

Monday, October 4, 2010

58

To find out more...

• “Bytecodes meet Combinators: invokedynamic on the
JVM”, Rose VMIL 2009
http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic

Monday, October 4, 2010

http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic
http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic

58

To find out more...

• “Bytecodes meet Combinators: invokedynamic on the
JVM”, Rose VMIL 2009
http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic

• “Optimizing Invokedynamic”, Thalinger PPPJ 2010
http://blogs.sun.com/jrose/entry/an_experiment_with_generic_arithmetic

Monday, October 4, 2010

http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic
http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic
http://blogs.sun.com/jrose/entry/an_experiment_with_generic_arithmetic
http://blogs.sun.com/jrose/entry/an_experiment_with_generic_arithmetic

58

To find out more...

• “Bytecodes meet Combinators: invokedynamic on the
JVM”, Rose VMIL 2009
http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic

• “Optimizing Invokedynamic”, Thalinger PPPJ 2010
http://blogs.sun.com/jrose/entry/an_experiment_with_generic_arithmetic

• JVM Language Summit 2010
http://wiki.jvmlangsummit.com

Monday, October 4, 2010

http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic
http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic
http://blogs.sun.com/jrose/entry/an_experiment_with_generic_arithmetic
http://blogs.sun.com/jrose/entry/an_experiment_with_generic_arithmetic
http://wiki.jvmlangsummit.com
http://wiki.jvmlangsummit.com

58

To find out more...

• “Bytecodes meet Combinators: invokedynamic on the
JVM”, Rose VMIL 2009
http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic

• “Optimizing Invokedynamic”, Thalinger PPPJ 2010
http://blogs.sun.com/jrose/entry/an_experiment_with_generic_arithmetic

• JVM Language Summit 2010
http://wiki.jvmlangsummit.com

• Da Vinci Machine Project
http://openjdk.java.net/projects/mlvm/

Monday, October 4, 2010

http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic
http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic
http://blogs.sun.com/jrose/entry/an_experiment_with_generic_arithmetic
http://blogs.sun.com/jrose/entry/an_experiment_with_generic_arithmetic
http://wiki.jvmlangsummit.com
http://wiki.jvmlangsummit.com
http://openjdk.java.net/projects/mlvm/
http://openjdk.java.net/projects/mlvm/

58

To find out more...

• “Bytecodes meet Combinators: invokedynamic on the
JVM”, Rose VMIL 2009
http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic

• “Optimizing Invokedynamic”, Thalinger PPPJ 2010
http://blogs.sun.com/jrose/entry/an_experiment_with_generic_arithmetic

• JVM Language Summit 2010
http://wiki.jvmlangsummit.com

• Da Vinci Machine Project
http://openjdk.java.net/projects/mlvm/

• Friday 9/25 bonus: http://scalaliftoff.com/
(discount code = scalaone)

Monday, October 4, 2010

http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic
http://blogs.sun.com/jrose/entry/vmil_paper_on_invokedynamic
http://blogs.sun.com/jrose/entry/an_experiment_with_generic_arithmetic
http://blogs.sun.com/jrose/entry/an_experiment_with_generic_arithmetic
http://wiki.jvmlangsummit.com
http://wiki.jvmlangsummit.com
http://openjdk.java.net/projects/mlvm/
http://openjdk.java.net/projects/mlvm/
http://scalaliftoff.com
http://scalaliftoff.com

59

Monday, October 4, 2010

