
Clojure
A Dynamic Programming Language for the JVM

(and CLR)

Rich Hickey

Agenda

• Fundamentals

• Rationale

• Feature Tour

• Integration with the JVM

• Q&A

Clojure Fundamentals
• Dynamic

• a new Lisp, not Common Lisp or Scheme

• Functional

• emphasis on immutability

• Supporting Concurrency

• Hosted on the JVM

• Compiles to JVM bytecode

• Not Object-oriented

Why use a dynamic
language?

• Flexibility

• Interactivity

• Concision

• Exploration

• Focus on your problem

• == Productivity

Why the JVM?
• VMs, not OSes, are the target platforms of future

languages, providing:

• Type system

• Dynamic enforcement and safety

• Libraries

• Huge set of facilities

• Memory and other resource management

• GC is platform, not language, facility

• Bytecode + JIT compilation

Why a Lisp?
• Dynamic

• Small core

• Clojure is a solo effort

• Elegant syntax

• Core advantage still code-as-data and
syntactic abstraction

• Saw opportunities to reduce parens-
overload

Why Functional?

• Easier to reason about

• Easier to test

• Essential for concurrency

• Few dynamic functional languages

• Most focus on static type systems

• Functional by convention is not good
enough

Why Focus on Concurrency?

• Multi-core is here to stay

• Multithreading a real challenge in Java et al

• Locking is too hard to get right

• FP/Immutability helps

• Share freely between threads

• But ‘changing’ state a reality for simulations and
working models

• Automatic/enforced language support needed

Why not OO?
• Encourages mutable State

• Mutable stateful objects are the new
spaghetti code

• Encapsulation != concurrency semantics

• Common Lisp’s generic functions proved
utility of methods outside of classes

• Polymorphism shouldn’t be based (only) on
types

• Many more...

Feature Tour

• Data types and data abstractions

• Syntax

• Persistent Data Structures

• Functional Programming

• Abstraction-based library

• Concurrent Programming

• JVM/Java Integration

Clojure is a Lisp

• Dynamically typed, dynamically compiled

• Interactive - REPL

• Load/change code in running program

• Code as data - Reader

• Small core

• Sequences

• Syntactic abstraction - macros

Traditional evaluation

Compiler

Executable
.class/.jar

Effect

bytecode

Code

Text

JVM

characters

Run java

Clojure Evaluation

Reader

evaluator/
compiler

Effect

data structures

Code

Text

bytecode JVM

characters

Interactivity

Reader

evaluator/
compiler

Effect

data structures

Code

Text

bytecode

You

JVM

characters

characters

Programs writing Programs

Reader

evaluator/
compiler

Effect

data structures

Code

Text

bytecode

You

JVM

characters

characters

Program

data structures

Syntactic Abstraction

Reader

evaluator/
compiler

Effect

data structures

Code

Text

bytecode

You

JVM

characters

characters

Program

data structures

Program
(macro)

data structures

Atomic Data Types
• Arbitrary precision integers - 12345678987654

• Doubles 1.234 , BigDecimals 1.234M

• Ratios - 22/7

• Strings - “fred” , Characters - \a \b \c

• Symbols - fred ethel , Keywords - :fred :ethel

• Booleans - true false , Null - nil

• Regex patterns #“a*b”

Data Structures
• Lists - singly linked, grow at front

• (1 2 3 4 5), (fred ethel lucy), (list 1 2 3)

• Vectors - indexed access, grow at end

• [1 2 3 4 5], [fred ethel lucy]

• Maps - key/value associations

• {:a 1, :b 2, :c 3}, {1 “ethel” 2 “fred”}

• Sets #{fred ethel lucy}

• Everything Nests

Syntax
• You’ve just seen it

• Data structures are the code

• Not text-based syntax

• Syntax is in the interpretation of data
structures

• Things that would be declarations, control
structures, function calls, operators, are all
just lists with op at front

• Everything is an expression

Syntax Comparison

Java Clojure
int i = 5; (def i 5)

if(x == 0)
 return y;
else
 return z;

(if (zero? x)
 y
 z)

x* y * z; (* x y z)

foo(x, y, z); (foo x y z)

file.close(); (.close file)

• Control structures, function calls, operators,
are all just lists with op at front:

Norvig’s Spelling Corrector in Python
http://norvig.com/spell-correct.html

def words(text): return re.findall('[a-z]+', text.lower())

def train(features):
 model = collections.defaultdict(lambda: 1)
 for f in features:
 model[f] += 1
 return model

NWORDS = train(words(file('big.txt').read()))
alphabet = 'abcdefghijklmnopqrstuvwxyz'

def edits1(word):
 n = len(word)
 return set([word[0:i]+word[i+1:] for i in range(n)] +
 [word[0:i]+word[i+1]+word[i]+word[i+2:] for i in range(n-1)] +
 [word[0:i]+c+word[i+1:] for i in range(n) for c in alphabet] +
 [word[0:i]+c+word[i:] for i in range(n+1) for c in alphabet])

def known_edits2(word):
 return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)

def known(words): return set(w for w in words if w in NWORDS)

def correct(word):
 candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]
 return max(candidates, key=lambda w: NWORDS[w])

; Norvig’s Spelling Corrector in Clojure
; http://en.wikibooks.org/wiki/Clojure_Programming#Examples

(defn words [text] (re-seq #"[a-z]+" (.toLowerCase text)))

(defn train [features]
 (reduce (fn [model f] (assoc model f (inc (get model f 1))))
 {} features))

(def *nwords* (train (words (slurp "big.txt"))))

(defn edits1 [word]
 (let [alphabet "abcdefghijklmnopqrstuvwxyz", n (count word)]
 (distinct (concat
 (for [i (range n)] (str (subs word 0 i) (subs word (inc i))))
 (for [i (range (dec n))]
 (str (subs word 0 i) (nth word (inc i)) (nth word i) (subs word (+ 2 i))))
 (for [i (range n) c alphabet] (str (subs word 0 i) c (subs word (inc i))))
 (for [i (range (inc n)) c alphabet] (str (subs word 0 i) c (subs word i)))))))

(defn known [words nwords] (for [w words :when (nwords w)] w))

(defn known-edits2 [word nwords]
 (for [e1 (edits1 word) e2 (edits1 e1) :when (nwords e2)] e2))

(defn correct [word nwords]
 (let [candidates (or (known [word] nwords) (known (edits1 word) nwords)
 (known-edits2 word nwords) [word])]
 (apply max-key #(get nwords % 1) candidates)))

http://en.wikibooks.org/wiki/Clojure_Programming#
http://en.wikibooks.org/wiki/Clojure_Programming#

Clojure is Functional
• All data structures immutable

• Core library functions have no side effects

• Easier to reason about, test

• Essential for concurrency

• Functional by convention insufficient

• let-bound locals are immutable

• loop/recur functional looping construct

• Higher-order functions

Persistent Data Structures
• Immutable, + old version of the collection is still

available after 'changes'

• Collection maintains its performance guarantees for
most operations

• New versions are not full copies

• Structural sharing key to efficiency

• Thread safe, iteration safe

• All Clojure data structures persistent

• Hash map/sets and vectors based upon array
mapped hash tries (Bagwell)

Abstraction-based Library
• Sequences, replace traditional Lisp lists

• Seqs on all Clojure collections, all Java
collections, Strings, regex matches, files...

• Can be lazy - like generators

• All Collections

• Functions (call-ability)

• Maps/vectors/sets are functions

• Many implementations

• Extensible from Java and Clojure

Sequences
• Abstraction of traditional Lisp lists

• (seq coll)

• if collection is non-empty, return seq
object on it, else nil

• (first seq)

• returns the first element

• (rest seq)

• returns a sequence of the rest of the
elements

Sequences
(drop 2 [1 2 3 4 5]) -> (3 4 5)

(take 9 (cycle [1 2 3 4]))
-> (1 2 3 4 1 2 3 4 1)

(interleave [:a :b :c :d :e] [1 2 3 4 5])
-> (:a 1 :b 2 :c 3 :d 4 :e 5)

(partition 3 [1 2 3 4 5 6 7 8 9])
-> ((1 2 3) (4 5 6) (7 8 9))

(map vector [:a :b :c :d :e] [1 2 3 4 5])
-> ([:a 1] [:b 2] [:c 3] [:d 4] [:e 5])

(apply str (interpose \, "asdf"))
-> "a,s,d,f"

(reduce + (range 100)) -> 4950

Maps and Sets
(def m {:a 1 :b 2 :c 3})

(m :b) -> 2 ;also (:b m)

(keys m) -> (:a :b :c)

(assoc m :d 4 :c 42) -> {:d 4, :a 1, :b 2, :c 42}

(merge-with + m {:a 2 :b 3}) -> {:a 3, :b 5, :c 3}

(union #{:a :b :c} #{:c :d :e}) -> #{:d :a :b :c :e}

(join #{{:a 1 :b 2 :c 3} {:a 1 :b 21 :c 42}}
 #{{:a 1 :b 2 :e 5} {:a 1 :b 21 :d 4}})

-> #{{:d 4, :a 1, :b 21, :c 42}
 {:a 1, :b 2, :c 3, :e 5}}

Concurrency
• Interleaved/simultaneous execution

• Must avoid seeing/yielding inconsistent data

• The more components there are to the data,
the more difficult to keep consistent

• The more steps in a logical change, the more
difficult to keep consistent

• Clojure also supports parallel computation

• Emphasis here on coordination

Concurrency Methods
• Conventional way:

• Direct references to mutable objects

• Lock and worry (manual/convention)

• Clojure way:

• Indirect references to immutable persistent data
structures (inspired by SML’s ref)

• Concurrency semantics for references

• Automatic/enforced

• No locks in user code!

Typical OO - Direct
references to Mutable Objects

• Unifies identity and value
• Anything can change at any time
• Consistency is a user problem
• Encapsulation doesn’t solve concurrency

problems

?

?

42

?

6:e

:d

:c

:b

:a

foo

Clojure - Indirect references
to Immutable Objects

6

17

"ethel"

"fred"

42

:e

:d

:c

:b

:afoo

@foo

• Separates identity and value
• Obtaining value requires explicit

dereference
• Values can never change
• Never an inconsistent value

• Encapsulation is orthogonal

Clojure References

• The only things that mutate are references
themselves, in a controlled way

• 4 types of mutable references, with different
semantics:

• Refs - shared/synchronous/coordinated

• Agents - shared/asynchronous/autonomous

• Atoms - shared/synchronous/autonomous

• Vars - Isolated changes within threads

Refs and Transactions
• Software transactional memory system (STM)

• Refs can only be changed within a transaction

• All changes are Atomic and Isolated

• Every change to Refs made within a
transaction occurs or none do

• No transaction sees the effects of any
other transaction while it is running

• Transactions are speculative

• Will be retried automatically if conflict

• Must avoid side-effects!

Java Integration
• Clojure strings are Java Strings, numbers are

Numbers, collections implement Collection,
fns implement Callable and Runnable etc.

• Core abstractions, like seq, are Java interfaces

• Clojure seq library works on Java Iterables,
Strings and arrays.

• Implement and extend Java interfaces and
classes

• Primitive arithmetic support equals Java’s
speed.

Java Interop
Math/PI
3.141592653589793

(.. System getProperties (get "java.version"))
"1.5.0_13"

(new java.util.Date)
Thu Jun 05 12:37:32 EDT 2008

(doto (JFrame.) (add (JLabel. "Hello World")) pack show)

;expands to:
(let [x (JFrame.)]
 (do (. x (add (JLabel. "Hello World")))
 (. x pack)
 (. x show))
 x)

Swing Example
(import '(javax.swing JFrame JLabel JTextField JButton)
 '(java.awt.event ActionListener) '(java.awt GridLayout))

(defn celsius []
 (let [frame (JFrame. "Celsius Converter")
 temp-text (JTextField.)
 celsius-label (JLabel. "Celsius")
 convert-button (JButton. "Convert")
 fahrenheit-label (JLabel. "Fahrenheit")]
 (.addActionListener convert-button
 (proxy [ActionListener] []
 (actionPerformed [evt]
 (let [c (. Double parseDouble (.getText temp-text))]
 (.setText fahrenheit-label
 (str (+ 32 (* 1.8 c)) " Fahrenheit"))))))
 (doto frame
 (setLayout (GridLayout. 2 2 3 3))
 (add temp-text) (add celsius-label)
 (add convert-button) (add fahrenheit-label)
 (setSize 300 80) (setVisible true))))

(celsius)

Benefits of the JVM
• Focus on my language vs code generation or

mundane libraries

• Sharing GC and type system with
implementation/FFI language is huge benefit

• Tools - e.g. breakpoint/step debugging etc.

• Libraries! Users can do UI, database, web, XML,
graphics, etc right away

• Great MT infrastructure - java.util.concurrent

• well-defined memory model

There’s much more!
• Metadata

• Recursive functional looping

• Destructuring binding in let/fn/loop

• List comprehensions (for)

• Relational set algebra

• Multimethods

• Parallel computation

• Namespaces, zippers, XML ...

Why Clojure?
• Expressive, elegant

• Approachable functional programming

• Robust, easy-to-use concurrency

• Powerful extensibility, good performance

• Leverage an established, accepted platform

• Good tools

• NetBeans, IntelliJ, Emacs, YourKit ...

• Good documentation, great community

Thanks for listening!

http://clojure.org

Questions?

http://www.clojure.org
http://www.clojure.org

