Software Visualization 101+

Michele Lanza

REVEAL @ Faculty of Informatics

University of Lugano, Switzerland

Part I

Prologue

Michela Lanza

Michela Lanza

Academic Research

Military Fantasies

Immersive Software Visualization

- R. Wettel, M. Lanza; Program Comprehension through Software Habitability. In ICPC 2007 (15th IEEE International Conference on Program Comprehension), pp. 231 240, IEEE CS Press, 2007
- R. Wettel, M. Lanza; Visualizing Software Systems as Cities. In **VISSOFT 2007** (4th IEEE International Workshop on Visualizing Software for Understanding and Analysis), pp. 92 99, IEEE CS Press, 2007
- R. Wettel, M. Lanza; Visually Localizing Design Problems with Disharmony Maps. In **Softvis 2008** (4th ACM International Symposium on Software Visualization), pp. 155 - 164, ACM Press, 2008
- R. Wettel, M. Lanza; Visual Exploration of Large-scale System Evolution. In
 WCRE 2008 (15th IEEE Working Conference on Reverse Engineering), pp. 219
 228, IEEE CS Press, 2008
- R. Wettel, M. Lanza; CodeCity: 3D Visualization of Evolving Large-Scale Software. In **ICSE 2008** (30th ACM/IEEE International Conference on Software Engineering), pp. 921 922, ACM Press, 2008.

Richard Wettel

Part II

Software

[Software is] anything but hardware, [...] the "soft" part is the intangible objects inside the computer.

```
Javascript: 
| Syptestext/javascript: | Syptes
                                                           ide/x-lcon* href="<?php bloginfo('template_directory'); ?>/favicon.ico* />
 php wp_head(); ?>
   dd-"header">
        <dip class="style_content">
<hi id="title"><a href="<?php echo get_settings('home'); ?>/"><apan><?php bloqinfo('name'); ?>//span>
                                $bShowContent - false;
if ($iLeadIndex - $aOptions['lead_count'] + 1) (
              echo ('<h2>' . __('Previous Articles') . '</h2>');
                            <div id="post_<?php the_ID(); 7>" class="post<?php echo($spostClass); 7>">
                                             chs class="title"><a href="<?php the_permalink() ?>"><span><?php the_title(); ?></span></a></h3>
                                                           cli class="icon author"><?php _e("Posted by", 'gluedideas_subtle'); ?> <?php the_author_posts_link(); ?>

                                            <?php if ($aOptions['show_metalinks']) : ?>
 '),'4' . __('Responses', 'gluedideas_subtle')); ?></a>
                                                           cli class="icon comment"><a href="<?php the_permalink() ?>#comments"><?php comments_number(__('No Responses', 'qluedideas_subtle'),__('One
linedideas_subtle'));</pre>
                                                          cli class="icon delicious"><a href="http://del.icio.us/post?url=<?php the_permalink() ?>&amp;title=<?php echo urlencode(get_the_title());</pre>
                                                          class="icon digg"><a href="http://www.digg.com/submit" target="_new">Digg</a>
                                                          class="icon technorati"><a href="http://technorati.com/cosmos/search.html?url=<?php the_permalink() ?>">Technorati</a>
                                          <?php endif; ?>
                                         <br class="clear" />
                                         <?php if ($bShowContent) : ?>
                                         <div class="content">
                                                          <?php the_content(''); ?>
       Source Code = Text
```



```
if(i<0||E-S\&\&b|E|\&\&v-E<2\&E-v<2)m=I;
                                                                                                                                              /* K capt. or bad castling */
                                  micro-Max,
                                                                                                   if(m>=l)goto C;
                                                                                                                                             /* abort on fail high
/* A chess program smaller than 2KB (of non-blank source), by H.G. Muller */
/* version 3.2 (2000 characters) features:
/* - recursive negamax search
/* - quiescence search with recaptures
/* - recapture extensions
                                                                                                   if(h=d-(v!=z))
                                                                                                                                              /* remaining depth(-recapt.)*/
/* - (internal) iterative deepening
                                                                                                   \{v=p<6?b[x+8]-b[v+8]:0:
                                                                                                                                             /* center positional pts.
/* - best-move-first 'sorting'
                                                                                                                                             /* do move, strip virgin-bit*/
                                                                                                    b[G]=b[H]=b[x]=0;b[y]=u&31;
                                                                              * /
/* - a hash table storing score and best move
                                                                                                    if(!(G&M))\{b[F]=k+6;v+=30;\}
                                                                                                                                             /* castling: put R & score */
/* - full FIDE rules (expt minor ptomotion) and move-legality checking
                                                                                                                                              /* pawns:
                                                                                                    if(p<3)
                                                                                                    \{v-=9*(((x-2)&M||b[x-2]!=u)+
                                                                                                                                              /* structure, undefended
                                                                                                                                                                           * /
#define F(I,S,N) for (I=S;I<N;I++)
                                                                                                           ((x+2)&M||b[x+2]!=u)-1);
                                                                                                                                                        squares plus bias */
#define W(A) while(A)
                                                                                                                                             /* promote p to Q, add score*/
                                                                                                     if(y+r+1&S)\{b[y]|=7;i+=C;\}
#define K(A,B) * (int*) (T+A+(B\&8)+S*(B\&7))
#define J(A) K(y+A,b[y])-K(x+A,u)-K(H+A,t)
                                                                                                    v=-D(24-k,-1-(1>e),m>q?-m:-q,-e-v-i,
                                                                                                                                              /* recursive eval. of reply */
                                                                                                         J+J(0).Z+J(8)+G-S.F.v.h):
                                                                                                                                             /* J.Z: hash kevs
#define U 16777224
                                                                                                    v-=v>e:
                                                                                                                                             /* delayed-gain penalty
struct {int K,V;char X,Y,D;} A[U];
                                                 /* hash table. 16M+8 entries*/
                                                                                                    if(7==9)
                                                                                                                                             /* called as move-legality */
                                                                                                    \{if(v!=-I&x==K&y==L)\}
                                                                                                                                                  checker: if move found */
int V=112.M=136,S=128,I=8e4,C=799,Q,N,i;
                                                 /* V=0x70=rank mask, M=0x88 */
                                                                                                     {Q=-e-i;O=F;return 1;}
                                                                                                                                                  & not in check, signal */
                                                                                                                                             /* (prevent fail-lows on
char O,K,L,
                                                                                                                                                  K-capt. replies)
w[] = \{0, 1, 1, 3, -1, 3, 5, 9\},
                                                 /* relative piece values
                                                                                                    b[G]=k+38;b[F]=b[v]=0;b[x]=u;b[H]=t;
                                                                                                                                             /* undo move, G can be dummy */
o[] = \{-16, -15, -17, 0, 1, 16, 0, 1, 16, 15, 17, 0, 14, 18, 31, 33, 0, /* \text{ step-vector lists } */
                                                                                                    if(Y\&8) \{m=v; Y\&=\sim 8; goto A; \}
                                                                                                                                              /* best=1st done,redo normal*/
     7,-1,11,6,8,3,6,
                                                 /* 1st dir. in o[] per piece*/
                                                                                                    if(v>m) \{m=v; X=x; Y=y \mid S\&G; \}
                                                                                                                                             /* update max. mark with S */
     6.3.5.7.4.5.3.6}.
                                                 /* initial piece setup
                                                                                                                                                          if non castling */
                                                                                                                                             /* fake capt. for nonsliding*/
b[129].
                                                 /* board: half of 16x8+dummy*/
                                                                                                   t += p < 5:
T[1035],
                                                 /* hash translation table
                                                                                                   if(p<3&6*k+(y&V)==5
                                                                                                                                             /* pawn on 3rd/6th, or
                                                                                                                                             /* virgin K moving sideways,*/
                                                                                                       11(u\&\sim24)==36\&i==7\&\&
n[]=".?+nkbrq?*?NKBRQ";
                                                 /* piece symbols on printout*/
                                                                                                       G\&M\&\&b[G=(x|7)-(r>>1\&7)]\&32
                                                                                                                                             /* 1st, virgin R in corner G*/
                                                                                                       &&! (b[G^1]|b[G^2])
                                                                                                                                             /* 2 empty sqrs. next to R */
D(k,q,l,e,J,Z,E,z,n)
                         /* recursive minimax search, k=moving side, n=depth*/
                                                                                                   ) {F=v;t--;}
                                                                                                                                             /* unfake capt., enable e.p.*/
int k,q,l,e,J,Z,E,z,n; /* (q,l)=window, e=current eval. score, E=e.p. sqr.*/
                                                                                                  }W(!t):
                                                                                                                                             /* if not capt. continue ray*/
                                                                                                                                             /* next sqr. of board, wrap */
                         /* e=score, z=prev.dest; J.Z=hashkeys; return score*/
                                                                                              }}W((x=x+9\&\sim M)-B);
int j,r,m,v,d,h,i=9,F,G;
                                                                                            C: if (m>I/4|m<-I/4) d=99;
                                                                                                                                             /* mate is indep. of depth */
 char t,p,u,x,y,X,Y,H,B;
                                                                                                                                             /* best loses K: (stale)mate*/
                                                                                               m=m+I?m:-D(24-k,-I,I,0,J,Z,S,S,1)/2:
                                                                                               if(!a->K|(a->X&M)!=M|a->D<=d)
                                                                                                                                             /* if new/better type/depth:*/
struct *a=A;
                                                 /* lookup pos. in hash table*/
                                                                                               \{a->K=Z:a->V=m:a->D=d:A->K=0:
                                                                                                                                             /* store in hash, dummy stays*/
j = (k*E^{J})&U-9;
                                                 /* try 8 consec. locations */
                                                                                               a->X=X|8*(m>q)|S*(m<1);a->Y=Y;
                                                                                                                                             /* empty, type (limit/exact)*/
W((h=A[++j].K)&h-Z&k--i);
                                                 /* first empty or match
                                                                                                                                                    encoded in X S.8 bits */
                                                 /* dummy A[0] if miss & full*/
                                                                                            /*if(z==8) printf("%2d ply, %9d searched, %6d by (%2x,%2x)
 a+=i?i:0:
 if(a->K)
                                                 /* hit: pos. is in hash tab */
                                                                                            n'', d-1, N, m, X, Y&0x77); */
                                                 /* examine stored data
 \{d=a->D; v=a->V; X=a->X;
                                                 /* if depth sufficient:
                                                                                             if(z&8){K=X;L=Y&~M;}
 if(d>=n)
 {if(v \ge 1 \mid X\&S\&v \le q \mid X\&8) return v;
                                                 /* use if window compatible */
                                                                                             return m;
  d=n-1;
                                                 /* or use as iter. start
  X\&=\sim M; Y=a->Y;
                                                         with best-move hint */
                                                 /* don't try best at d=0
 Y=d?Y:0;
                                                                                            main()
 }else d=X=Y=0:
                                                 /* start iter., no best yet */
 N++:
                                                 /* node count (for timing) */
                                                                                             int j,k=8,*p,c[9];
 W(d++< n \mid z==8&N<1e7&d<98)
                                                 /* iterative deepening loop */
 \{x=B=X:
                                                 /* start scan at prev. best */
                                                                                             F(i.0.8)
 YI=8&Y>>4:
                                                 /* request try noncastl. 1st*/
                                                                                              \{b[i] = (b[i+V] = o[i+24] + 40) + 8; b[i+16] = 18; b[i+96] = 9;
                                                                                                                                                    /* initial board setup*/
 m=d>1?-I:e:
                                                 /* unconsidered:static eval */
                                                                                                                                                    /* center-pts table */
                                                                                              F(j,0,8)b[16*j+i+8]=(i-4)*(i-4)+(j-3.5)*(j-3.5);
 do\{u=b[x];
                                                 /* scan board looking for */
                                                                                                                                                    /*(in unused half b[])*/
  if(u&k)
                                                 /* own piece (inefficient!)*/
                                                                                             F(i,M,1035)T[i]=random()>>9;
   \{r=p=u\&7;
                                                 /* p = piece type (set r>0) */
    j=o[p+16];
                                                 /* first step vector f.piece*/
                                                                                                                                                    /* play loop
    W(r=p>2&r<0?-r:-o[++j])
                                                 /* loop over directions o[] */
                                                                                              \{F(i,0,121) \text{ printf}(\text{"} %c\text{"},i\&8\&\&(i+=7)?10:n[b[i]\&15]); /* \text{ print board }
                                                                                                                                                                           * /
                                                                                              p=c;W((*p++=getchar())>10);
                                                                                                                                                                           * /
    {A:
                                                 /* resume normal after best */
                                                                                                                                                    /* read input line
     y=x; F=G=S;
                                                 /* (x,y)=move, (F,G)=castl.R*/
                                                                                               N=0:
                                                 /* y traverses ray
                                                                                               if(*c-10){K=c[0]-16*c[1]+C;L=c[2]-16*c[3]+C;}else /* parse entered move */
     do\{H=y+=r;
                                                                                                                                                    /* or think up one
      if(Y\&8)H=y=Y\&\sim M;
                                                 /* sneak in prev. best move */
                                                                                               D(k,-I,I,Q,1,1,0,8,0);
      if(v&M)break:
                                                 /* board edge hit
                                                                                               F(i.0.U)A[i].K=0:
                                                                                                                                                    /* clear hash table
                                                                                                                                                                          * /
      if(p<3&v==E)H=v^16:
                                                 /* shift capt.sqr. H if e.p.*/
                                                                                              if(D(k,-I,I,Q,1,1,0,9,2)==I)k^=24;
                                                                                                                                                    /* check legality & do*/
      t=b[H]; if (t&k|p<3&!(r&7)!=!t) break;
                                                 /* capt. own, bad pawn mode */
      i = 99*w[t&7];
                                                 /* value of capt. piece t */
```


Old Habits Die Hard

Enjoy the Ride

Part III

Software Visualization

Software Visualization

"The use of the crafts of typography, graphic design, animation, and cinematography with modern human-computer interaction and computer graphics technology to facilitate both the human understanding and effective use of computer software."

John Stasko, 1998

dictatorial

cribes. 3 A person who dictates words -to-ri-al (dik'tə-tôr'ē-əl, -tō'rē-) ad g; overbearing; autocratic. 2 Of or pe or his rule. -dic'ta to'ri al ly adv. ary, despotic, opinionated, arrogan on (dik'shan) n. 1 The use, choice a ds and modes of expression. 2 The words in speaking or singing. [< n-ar-y (dik'shən-er'ē) n. pl. -ar-ie the words of a language arrange ith their syllabication, pronuncia mology. 2 A similar work having ents in another language. 3 Any l or terms arranged alphabetical L dictionarium a collection of wor (dik'təm) n. pl. dic.ta (-tə) or .tun ogmatic, or positive utterance; a lar saying; a maxim. [<L dicere p.t. of po^1 . c (dī-dak'tik, di-) adj. 1 Intended 2 Morally instructive; preceptive teach; pedantic. Also di-dac'ti-c -di-dac'ti-cal-ly adv. -di-dac'tis (dī-dak'tiks, di-) n. pl. (cons e or art of instruction or educa-

Software Visualization

"The use of the crafts of typography, graphic design, animation, and cinematography with modern human-computer interaction and computer graphics technology to facilitate both the human understanding and effective use of computer software."

dictatorial

cribes. 3 A person who dictates words -to-ri-al (dik'tə-tôr'ē-əl, -tō'rē-) ad g; overbearing; autocratic. 2 Of or pe or his rule. -dic'ta-to'ri-al-ly adv. ary, despotic, opinionated, arrogan on (dik'shan) n. 1 The use, choice a ds and modes of expression. 2 The words in speaking or singing. [<] n-ar-y (dik'shən-er'ē) n. pl. -ar-ie the words of a language arrange ith their syllabication, pronuncia mology. 2 A similar work having ents in another language. 3 Any l or terms arranged alphabetical L dictionarium a collection of wor (dik'təm) n. pl. dic.ta (-tə) or .tun ogmatic, or positive utterance; a lar saying; a maxim. [<L dicere p.t. of po^1 . (dī-dak'tik, di-) adj. 1 Intended 2 Morally instructive; preceptive teach; pedantic. Also di-dac'ti-c -di-dac'ti-cal-ly adv. -di-dac'tis (dī-dak'tiks, di-) n. pl. (cons e or art of instruction or educat

```
#include
                                           <svs/time.h>
#include
                                           <X11/Xlib.h>
#include
                                          <X11/keysym.h>
                                          double L ,o ,P
                                         , =dt,T,Z,D=1.d.
                                         s[999],E,h= 8,I,
                                         J.K.w[999],M.m.O
                                        ,n[999],j=33e-3,i=
                                        1E3,r,t, u,v ,W,S=
                                        74.5,1=221,X=7.26,
                                        a,B,A=32.2,c, F,H;
                                        int N,q, C, y,p,U;
                                       Window z; char f[52]
                                    ; GC k; main() { Display*e=
XOpenDisplay( 0); z=RootWindow(e,0); for (XSetForeground(e,k=XCreateGC (e,z,0,0),BlackPixel(e,0))
; scanf("%lf%lf%lf",y +n,w+y, y+s)+1; y ++); XSelectInput(e,z= XCreateSimpleWindow(e,z,0,0,400,400,
0,0,WhitePixel(e,0)),KeyPressMask); for(XMapWindow(e,z); T=sin(O)){ struct timeval G={ 0,dt*1e6}
; K= cos(j); N=1e4; M+= H*; Z=D*K; F+= *P; r=E*K; W=cos(O); m=K*W; H=K*T; O+=D* *F/ K+d/K*E*; B=
sin(j); a=B*T*D-E*W; XClearWindow(e,z); t=T*E+D*B*W; j+=d*D-F*E; P=W*E*B-T*D; for (o+=(I=D*W+E))
*T*B,E*d/K *B+v+B/K*F*D) * ; p<y; ){ T=p[s]+i; E=c-p[w]; D=n[p]-L; K=D*m-B*T-H*E; if(p [n]+w[ p]+p[s
]== 0|K <fabs(W=T*r-I*E +D*P) |fabs(D=t *D+Z *T-a *E) > K)N=1e4; else{ q=W/K *4E2+2e2; C= 2E2+4e2/ K
*D; N-1E4&& XDrawLine(e ,z,k,N ,U,q,C); N=q; U=C; } ++p; } L+= * (X*t +P*M+m*1); T=X*X+ 1*1+M *M;
 XDrawString(e,z,k,20,380,f,17); D=v/l*15; i+=(B *l-M*r -X*Z)*; for(; XPending(e); u *=CS!=N){
                                   XEvent z; XNextEvent(e ,&z);
                                       ++* ( (N=XLookupKeysym
                                         (&z.xkey,0))-IT?
                                         N-LT? UP-N?& E:&
                                         J:& u: &h); --*(
                                         DN -N? N-DT ?N==
                                         RT?&u: & W:&h:&J
                                         ); } m=15*F/l;
                                          c+=(I=M/1,1*H
                                          +I*M+a*X) * ; H
                                          =A*r+v*X-F*1+(
                                          E=.1+X*4.9/1.t
                                          =T*m/32-I*T/24
                                           )/S; K=F*M+(
                                           h* 1e4/1-(T+
                                           E*5*T*E) /3e2
                                           )/S-X*d-B*A;
                                           a=2.63 /1*d;
                                           X+=(d*1-T/S
                                            *(.19*E +a
                                            *.64+J/1e3
                                            )-M* v +A*
                                            Z) * ; 1 +=
                                            K * ; W=d;
                                            sprintf(f,
                                            "%5d %3d"
                                            "%7d",p =1
                                           /1.7,(C=9E3+
                              0*57.3) %0550, (int)i); d+=T*(.45-14/1*
                             X-a*130-J* .14) * /125e2+F* *v; P=(T*(47)
                             *I-m* 52+E*94 *D-t*.38+u*.21*E) /1e2+W*
                             179*v)/2312; select(p=0,0,0,0,&G); v=(
                              W*F-T*(.63*m-I*.086+m*E*19-D*25-.11*u
                               )/107e2)*_; D=cos(o); E=sin(o); } }
```

<math.h>

#include

```
#include
                                           <math.h>
#include
                                         <svs/time.h>
#include
                                          <X11/Xlib.h>
#include
                                        <X11/keysym.h>
                                        double L ,o ,P
                                        , =dt,T,Z,D=1,d,
                                       s[999],E,h= 8,I,
                                       J.K.w[999],M.m.O
                                       ,n[999],j=33e-3,i=
                                      1E3,r,t, u,v ,W,S=
                                      74.5,1=221,X=7.26,
                                      a,B,A=32.2,c, F,H;
                                      int N,q, C, y,p,U;
                                     Window z; char f[52]
     not software visualization
                                   ; GC k; main() { Display*e=
XOpenDisplay(0); z=RootWindow(e,0); for (XSetForeground(e,k=XCreateGC
                                                                                            400
; scanf("%lf%lf%lf",y +n,w+y, y+s)+1; y ++); XSelectInput(e,z= XCre>
0,0,WhitePixel(e,0)),KeyPressMask); for(XMapWindow(e,z); ; T=s*
; K= cos(j); N=1e4; M+= H*_; Z=D*K; F+=_*P; r=E*K; W=cos(O'
sin(i); a=B*T*D-E*W; XClearWindow(e,z); t=T*E+ D*B*W; i
*T*B,E*d/K *B+v+B/K*F*D) * ; p<y; ) { T=p[s]+i; E=c-p'
]== 0|K <fabs(W=T*r-I*E +D*P) |fabs(D=t *D+Z *T
*D; N-1E4&& XDrawLine(e ,z,k,N ,U,q,C); N=
 XDrawString(e,z,k ,20,380,f,17); D=v/
                                         E*5*T*E)/3e2
                                         )/S-X*d-B*A;
                                         a=2.63 /1*d;
                                         X+=(d*1-T/S
                                          *(.19*E +a
                                          *.64+J/1e3
                                          )-M* v +A*
                                          Z) * ; 1 +=
                                          K * ; W=d;
                                          sprintf(f,
                                          "%5d %3d"
                                          "%7d",p =1
                                         /1.7, (C=9E3+
                             0*57.3) %0550, (int)i); d+=T*(.45-14/1*
                            X-a*130-J* .14) * /125e2+F* *v; P=(T*(47)
                            *I-m* 52+E*94 *D-t*.38+u*.21*E) /1e2+W*
                            179*v)/2312; select(p=0,0,0,0,&G); v-=(
                             W*F-T*(.63*m-I*.086+m*E*19-D*25-.11*u
```

)/107e2)*_; D=cos(o); E=sin(o); } }

A picture is worth a thousand words

Visualization is about stories

Part IV

Seeing

We are Visual Beings

70% of all brain inputs come through the eyes

We see with our Brain

- 3 types of memory to process visual information
 - ▶ Iconic, the visual sensory register
 - ▶ Short-term, the working memory
 - ▶ (Long-term)

 Iconic Memory is a buffer that retains information for less than 1 second before passing it to short-term memory

- Iconic Memory is a buffer that retains information for less than 1 second before passing it to short-term memory
 - Perception of a limited set of attributes is very fast, automatic & subconscious, therefore called pre-attentive

- Iconic Memory is a buffer that retains information for less than 1 second before passing it to short-term memory
 - Perception of a limited set of attributes is very fast, automatic & subconscious, therefore called **pre-attentive**
- Short-term Memory processes information as "chunks"

- Iconic Memory is a buffer that retains information for less than 1 second before passing it to short-term memory
 - Perception of a limited set of attributes is very fast, automatic & subconscious, therefore called **pre-attentive**
- Short-term Memory processes information as "chunks"
 - Storage is temporary and of limited capacity (3-9 chunks)

- Iconic Memory is a buffer that retains information for less than 1 second before passing it to short-term memory
 - Perception of a limited set of attributes is very fast, automatic & subconscious, therefore called **pre-attentive**
- Short-term Memory processes information as "chunks"
 - Storage is temporary and of limited capacity (3-9 chunks)
 - This explains why charts are more expressive than tables

Pre-attentive Processing Attributes

Orientation	Line Length	Line Width	Size
Shape	Curvature	Added Marks	Enclosure

	Line Length	Line Width	Size
Shape	Curvature	Added Marks	Enclosure

The Polymetric View Principle

number of attributes

number of lines of code

number of methods

The X-Ray Eclipse Plugin

xray.inf.usi.ch

Part V

Software Visualization++

The Class Blueprint

invocation and access direction

Detailing the Class Blueprint

Schizophrenia

Wannabe

Gory Details Regular Overriding Extending Abstract Constant Delegating Setter Getter

"Software is intangible, having no physical shape or size."

Thomas Ball, Stephen Eick

"Software Visualization in the Large"

In *Computer*, vol. 29, no.4, pp. 33-43, IEEE Computer Society Press, 1996

How can we solve Ball's dilemma?

Metaphors..

"Habitability is the characteristic of source code that enables programmers, coders, bug-fixers, and people coming to the code later in its life to understand its construction and intentions and to change it comfortably and confidently."

Richard Gabriel

"Patterns of Software: Tales from the Software Community", Oxford University Press, 1998.

domain mapping	

domain mapping	
classes	buildings

domain mapping	
classes	buildings
packages	districts

domain mapping	
classes	buildings
packages	districts
system	city

class metric	building property
number of methods (NOM)	height
number of attributes (NOA)	width, length

package metric	district property
nesting level	color

ArgoUML's filmstrip

The Time Machine

JMol

versions **57 (bi-monthly snapshots)**

time **1999-2007**

The Time Machine

JMol

versions
57 (bi-monthly snapshots)

time 1999-2007

ArgoUML Age Map

JHotDraw Fine-grained Age map

Time Travel + Age Map October 2000) March 2001 September 2001 **JHotDraw** March 2002 August 2002 versions January 2003 July 2003 time January 2004 40 months

Time Travel + Age Map

Time Travel + Age Map October 2000 March 2001 (September 2001) **JHotDraw** March 2002 August 2002 versions January 2003 July 2003 time January 2004 40 months

Time Travel + Age Map

Time Travel + Age Map October 2000 March 2001 September 2001 **JHotDraw** March 2002 August 2002) versions January 2003 July 2003 time January 2004 40 months

Time Travel + Age Map October 2000 March 2001 September 2001 **JHotDraw** March 2002 August 2002 versions January 2003 July 2003 time January 2004 40 months

Time Travel + Age Map

Time Travel + Age Map

Displaying Design Problems

JDK 1.5 God Classes

Jmol's Feature Envy Feature envy

Jmol's Feature Envy Feature envy 1,500 methods (25%)

ArgoUML.Model's Shotgun Surgery Map

Part VI

Epilogue

Software Visualization is

Software Visualization is

a means to make the intangible tangible

Software Visualization is

a means to make the intangible tangible

not so difficult after all

Software Visualization is

a means to make the intangible tangible

not so difficult after all

still in its infancy

Software Visualization is

a means to make the intangible tangible

not so difficult after all

still in its infancy

an exciting research area

From here to...

