
Software Visualization 101+
Michele Lanza

REVEAL @ Faculty of Informatics

University of Lugano, Switzerland

Part I
Prologue

Michele Lanza

Michele Lanza

Michele Lanza

Michele Lanza

Academic Research

Industrial Reality

Military Fantasies

software ecosystems

bug analysis/prediction

holistic evolution

immersive
software

visualization

next-gen visual
programming

fine-grained
software evolution

synchronous
development

Richard Wettel

Immersive Software Visualization

‣ R. Wettel, M. Lanza; Program Comprehension through Software Habitability. In
ICPC 2007 (15th IEEE International Conference on Program Comprehension),
pp. 231 - 240, IEEE CS Press, 2007

‣ R. Wettel, M. Lanza; Visualizing Software Systems as Cities. In VISSOFT 2007
(4th IEEE International Workshop on Visualizing Software for Understanding and
Analysis), pp. 92 - 99, IEEE CS Press, 2007

‣ R. Wettel, M. Lanza; Visually Localizing Design Problems with Disharmony
Maps. In Softvis 2008 (4th ACM International Symposium on Software
Visualization), pp. 155 - 164, ACM Press, 2008

‣ R. Wettel, M. Lanza; Visual Exploration of Large-scale System Evolution. In
WCRE 2008 (15th IEEE Working Conference on Reverse Engineering), pp. 219
- 228, IEEE CS Press, 2008

‣ R. Wettel, M. Lanza; CodeCity: 3D Visualization of Evolving Large-Scale
Software. In ICSE 2008 (30th ACM/IEEE International Conference on Software
Engineering), pp. 921 - 922, ACM Press, 2008.

CodeCity

Goals

Goals

Goals

Goals

Part II
Software

[Software is] anything
but hardware, [...] the "soft"
part is the intangible objects

inside the computer.

Source Code = Text

Programming = Writing

/***/
/* micro-Max, */
/* A chess program smaller than 2KB (of non-blank source), by H.G. Muller */
/***/
/* version 3.2 (2000 characters) features: */
/* - recursive negamax search */
/* - quiescence search with recaptures */
/* - recapture extensions */
/* - (internal) iterative deepening */
/* - best-move-first 'sorting' */
/* - a hash table storing score and best move */
/* - full FIDE rules (expt minor ptomotion) and move-legality checking */

#define F(I,S,N) for(I=S;I<N;I++)
#define W(A) while(A)
#define K(A,B) *(int*)(T+A+(B&8)+S*(B&7))
#define J(A) K(y+A,b[y])-K(x+A,u)-K(H+A,t)

#define U 16777224
struct _ {int K,V;char X,Y,D;} A[U]; /* hash table, 16M+8 entries*/

int V=112,M=136,S=128,I=8e4,C=799,Q,N,i; /* V=0x70=rank mask, M=0x88 */

char O,K,L,
w[]={0,1,1,3,-1,3,5,9}, /* relative piece values */
o[]={-16,-15,-17,0,1,16,0,1,16,15,17,0,14,18,31,33,0, /* step-vector lists */
 7,-1,11,6,8,3,6, /* 1st dir. in o[] per piece*/
 6,3,5,7,4,5,3,6}, /* initial piece setup */
b[129], /* board: half of 16x8+dummy*/
T[1035], /* hash translation table */

n[]=".?+nkbrq?*?NKBRQ"; /* piece symbols on printout*/

D(k,q,l,e,J,Z,E,z,n) /* recursive minimax search, k=moving side, n=depth*/
int k,q,l,e,J,Z,E,z,n; /* (q,l)=window, e=current eval. score, E=e.p. sqr.*/
{ /* e=score, z=prev.dest; J,Z=hashkeys; return score*/
 int j,r,m,v,d,h,i=9,F,G;
 char t,p,u,x,y,X,Y,H,B;
 struct _*a=A;
 /* lookup pos. in hash table*/
 j=(k*E^J)&U-9; /* try 8 consec. locations */
 W((h=A[++j].K)&&h-Z&&--i); /* first empty or match */
 a+=i?j:0; /* dummy A[0] if miss & full*/
 if(a->K) /* hit: pos. is in hash tab */
 {d=a->D;v=a->V;X=a->X; /* examine stored data */
 if(d>=n) /* if depth sufficient: */
 {if(v>=l|X&S&&v<=q|X&8)return v; /* use if window compatible */
 d=n-1; /* or use as iter. start */
 }X&=~M;Y=a->Y; /* with best-move hint */
 Y=d?Y:0; /* don't try best at d=0 */
 }else d=X=Y=0; /* start iter., no best yet */
 N++; /* node count (for timing) */
 W(d++<n|z==8&N<1e7&d<98) /* iterative deepening loop */
 {x=B=X; /* start scan at prev. best */
 Y|=8&Y>>4; /* request try noncastl. 1st*/
 m=d>1?-I:e; /* unconsidered:static eval */
 do{u=b[x]; /* scan board looking for */
 if(u&k) /* own piece (inefficient!)*/
 {r=p=u&7; /* p = piece type (set r>0) */
 j=o[p+16]; /* first step vector f.piece*/
 W(r=p>2&r<0?-r:-o[++j]) /* loop over directions o[] */
 {A: /* resume normal after best */
 y=x;F=G=S; /* (x,y)=move, (F,G)=castl.R*/
 do{H=y+=r; /* y traverses ray */
 if(Y&8)H=y=Y&~M; /* sneak in prev. best move */
 if(y&M)break; /* board edge hit */
 if(p<3&y==E)H=y^16; /* shift capt.sqr. H if e.p.*/
 t=b[H];if(t&k|p<3&!(r&7)!=!t)break; /* capt. own, bad pawn mode */
 i=99*w[t&7]; /* value of capt. piece t */

 if(i<0||E-S&&b[E]&&y-E<2&E-y<2)m=I; /* K capt. or bad castling */
 if(m>=l)goto C; /* abort on fail high */

 if(h=d-(y!=z)) /* remaining depth(-recapt.)*/
 {v=p<6?b[x+8]-b[y+8]:0; /* center positional pts. */
 b[G]=b[H]=b[x]=0;b[y]=u&31; /* do move, strip virgin-bit*/
 if(!(G&M)){b[F]=k+6;v+=30;} /* castling: put R & score */
 if(p<3) /* pawns: */
 {v-=9*(((x-2)&M||b[x-2]!=u)+ /* structure, undefended */
 ((x+2)&M||b[x+2]!=u)-1); /* squares plus bias */
 if(y+r+1&S){b[y]|=7;i+=C;} /* promote p to Q, add score*/
 }
 v=-D(24-k,-l-(l>e),m>q?-m:-q,-e-v-i, /* recursive eval. of reply */
 J+J(0),Z+J(8)+G-S,F,y,h); /* J,Z: hash keys */
 v-=v>e; /* delayed-gain penalty */
 if(z==9) /* called as move-legality */
 {if(v!=-I&x==K&y==L) /* checker: if move found */
 {Q=-e-i;O=F;return l;} /* & not in check, signal */
 v=m; /* (prevent fail-lows on */
 } /* K-capt. replies) */
 b[G]=k+38;b[F]=b[y]=0;b[x]=u;b[H]=t; /* undo move,G can be dummy */
 if(Y&8){m=v;Y&=~8;goto A;} /* best=1st done,redo normal*/
 if(v>m){m=v;X=x;Y=y|S&G;} /* update max, mark with S */
 } /* if non castling */
 t+=p<5; /* fake capt. for nonsliding*/
 if(p<3&6*k+(y&V)==S /* pawn on 3rd/6th, or */
 ||(u&~24)==36&j==7&& /* virgin K moving sideways,*/
 G&M&&b[G=(x|7)-(r>>1&7)]&32 /* 1st, virgin R in corner G*/
 &&!(b[G^1]|b[G^2]) /* 2 empty sqrs. next to R */
){F=y;t--;} /* unfake capt., enable e.p.*/
 }W(!t); /* if not capt. continue ray*/
 }}}W((x=x+9&~M)-B); /* next sqr. of board, wrap */
C:if(m>I/4|m<-I/4)d=99; /* mate is indep. of depth */
 m=m+I?m:-D(24-k,-I,I,0,J,Z,S,S,1)/2; /* best loses K: (stale)mate*/
 if(!a->K|(a->X&M)!=M|a->D<=d) /* if new/better type/depth:*/
 {a->K=Z;a->V=m;a->D=d;A->K=0; /* store in hash,dummy stays*/
 a->X=X|8*(m>q)|S*(m<l);a->Y=Y; /* empty, type (limit/exact)*/
 } /* encoded in X S,8 bits */
/*if(z==8)printf("%2d ply, %9d searched, %6d by (%2x,%2x)
\n",d-1,N,m,X,Y&0x77);*/
 }
 if(z&8){K=X;L=Y&~M;}
 return m;
}

main()
{
 int j,k=8,*p,c[9];

 F(i,0,8)
 {b[i]=(b[i+V]=o[i+24]+40)+8;b[i+16]=18;b[i+96]=9; /* initial board setup*/
 F(j,0,8)b[16*j+i+8]=(i-4)*(i-4)+(j-3.5)*(j-3.5); /* center-pts table */
 } /*(in unused half b[])*/
 F(i,M,1035)T[i]=random()>>9;

 W(1) /* play loop */
 {F(i,0,121)printf(" %c",i&8&&(i+=7)?10:n[b[i]&15]); /* print board */
 p=c;W((*p++=getchar())>10); /* read input line */
 N=0;
 if(*c-10){K=c[0]-16*c[1]+C;L=c[2]-16*c[3]+C;}else /* parse entered move */
 D(k,-I,I,Q,1,1,O,8,0); /* or think up one */
 F(i,0,U)A[i].K=0; /* clear hash table */
 if(D(k,-I,I,Q,1,1,O,9,2)==I)k^=24; /* check legality & do*/
 }
}

Old Habits Die Hard

Enjoy the Ride

Part III
Software Visualization

Software Visualization

“The use of the crafts of typography,
graphic design, animation, and

cinematography with modern
human-computer interaction and
computer graphics technology to

facilitate both the human
understanding and effective use of

computer software.”

John Stasko, 1998

Software Visualization

“The use of the crafts of typography,
graphic design, animation, and

cinematography with modern
human-computer interaction and
computer graphics technology to

facilitate both the human
understanding and effective use of

computer software.”

not software visualization

A picture is worth a thousand words

A picture is worth a thousand words wrong

Visualization is about stories

UML took the thing with the

thousand words too literally

Part IV
Seeing

Seeing is Understanding

We are Visual Beings

70% of all brain inputs
come through the eyes

We see with our Brain

‣ 3 types of memory to process
visual information

‣ Iconic, the visual sensory register

‣ Short-term, the working memory

‣ (Long-term)

Iconic and Short-term Memory

Iconic and Short-term Memory

‣ Iconic Memory is a buffer that retains information for less
than 1 second before passing it to short-term memory

Iconic and Short-term Memory

‣ Iconic Memory is a buffer that retains information for less
than 1 second before passing it to short-term memory
‣ Perception of a limited set of attributes is very fast, automatic &

subconscious, therefore called pre-attentive

Iconic and Short-term Memory

‣ Iconic Memory is a buffer that retains information for less
than 1 second before passing it to short-term memory
‣ Perception of a limited set of attributes is very fast, automatic &

subconscious, therefore called pre-attentive

‣ Short-term Memory processes information as “chunks”

Iconic and Short-term Memory

‣ Iconic Memory is a buffer that retains information for less
than 1 second before passing it to short-term memory
‣ Perception of a limited set of attributes is very fast, automatic &

subconscious, therefore called pre-attentive

‣ Short-term Memory processes information as “chunks”
‣ Storage is temporary and of limited capacity (3-9 chunks)

Iconic and Short-term Memory

‣ Iconic Memory is a buffer that retains information for less
than 1 second before passing it to short-term memory
‣ Perception of a limited set of attributes is very fast, automatic &

subconscious, therefore called pre-attentive

‣ Short-term Memory processes information as “chunks”
‣ Storage is temporary and of limited capacity (3-9 chunks)
‣ This explains why charts are more expressive than tables

Pre-attentive Processing Attributes

Pre-attentive Attributes of Form

Orientation Line Length Line Width Size

Shape Curvature Added Marks Enclosure

Pre-attentive Attributes of Form

Line Length Line Width Size

Shape Curvature Added Marks Enclosure

Pre-attentive Attributes of Form

Line Width Size

Shape Curvature Added Marks Enclosure

Pre-attentive Attributes of Form

Size

Shape Curvature Added Marks Enclosure

Pre-attentive Attributes of Form

Shape Curvature Added Marks Enclosure

Pre-attentive Attributes of Form

Curvature Added Marks Enclosure

Pre-attentive Attributes of Form

Added Marks Enclosure

Pre-attentive Attributes of Form

Enclosure

Pre-attentive Attributes of Form

number of
lines of code

number of attributes

number of methods

The Polymetric View Principle

Released
Nov 2007

The X-Ray Eclipse Plugin

free

6800+
downloads

xray.inf.usi.ch

Part V
Software Visualization++

The Class Blueprint

The Class Blueprint

Initialize Interface Internal Accessor Attribute

invocation and access direction

Detailing the Class Blueprint

Regular

Overriding

Extending

Abstract

Constant

Delegating

Setter

Getter

Method

invocations

lines

Attribute

internal access

external
access

Access

Invocation

Initialize Interface Internal Accessor Attribute

Schizophrenia

Regular

Overriding

Extending

Abstract

Constant

Delegating

Setter

Getter

Wannabe

Regular

Overriding

Extending

Abstract

Constant

Delegating

Setter

Getter

Gory Details

Regular

Overriding

Extending

Abstract

Constant

Delegating

Setter

Getter

Where’s the Beauty?

Thomas Ball, Stephen Eick

“Software Visualization in the
Large”

In Computer, vol. 29, no.4, pp. 33-43,
IEEE Computer Society Press, 1996

“Software is intangible,
having no physical shape or size.”

The Best Defense is Attack

How can we solve Ball’s
dilemma?

Metaphors..

Richard Gabriel

“Patterns of Software: Tales from the
Software Community”, Oxford University
Press, 1998.

“Habitability is the characteristic of source code
that enables programmers, coders, bug-fixers,

and people coming to the code later in its life to
understand its construction and intentions and

to change it comfortably and confidently.”

Visualizing Software as Cities

The City Metaphor

The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

The City Metaphor

domain mappingdomain mapping

classes buildings

packages districts

system city

package metric district property

nesting level color

class metric building property

number of methods (NOM) height

number of attributes (NOA) width, length

Welcome to ArgoUML City

OK, so what?

applications

applications

applications

applications

Large-scale Program Comprehension

packages
198

classes
2,975

lines
166,735

argoUML
0.28.1_01

packages
784

classes
4,008

lines
173,436

apache
cocoon

Aug 27 2009

packages
391

classes
5,798

lines
275,910

frostwire
r1223

packages
945

classes
10,412

lines
263,645

jitterbit
r31527

packages
268

classes
1,754

lines
112,495

openswing
r296

packages
29

classes
550

lines
19,090

apache bcel
5.2

packages
103

classes
1,209

lines
158,208

hsqldb
r 3154

packages
610

classes
5,242

lines
456,064

vuze
4.2.0.8

packages
18

classes
1,331

lines
~105,000

ScumVM
(C++)

packages
288

classes
2,2236

lines
~351,000

Jun
(Smalltalk)

packages
1,777

classes
17,090

lines
~1,272,000

10 systems
(Java,Smalltalk,

C++)

Understanding Evolution

Ver. 0.10.1
9/10/2002

Ver. 0.12
18/08/2003

Ver. 0.14
5/12/2003

Ver. 0.16
19/07/2004

Ver. 0.18.1
30/04/2005

Ver. 0.20
9/02/2006

Ver. 0.22
8/08/2006

Ver. 0.23.4
10/12/2006

Ver. 0.24
12/02/2007

ModelFacade

ModelFacade

Facade

NSUMLModelFacade Facade

NSUMLModelFacade

FacadeMDRImpl

Facade

FacadeMDRImpl

ArgoUML’s filmstrip

The Time Machine

JMol

versions
57 (bi-monthly

snapshots)

time
1999-2007

The Time Machine

JMol

versions
57 (bi-monthly

snapshots)

time
1999-2007

CPPParser
NOA 85, NOM 204, AGE 4

STDCTokenTypes
NOA 152, NOM 0, AGE 4

JavaRecognizer
NOA 79, NOM 176, AGE 9

JavaTokenTypes
NOA 175, NOM 0, AGE 9

Facade
NOA 1, NOM 339, AGE 5

FacadeMDRImpl
NOA 3, NOM 351, AGE 4

JavaTokenTypes
NOA 146, NOM 0, AGE 9

JavaRecognizer
NOA 24, NOM 91, AGE 9

org.argouml.language.csharp

org.argouml.language.php

org.argouml.language.cpp

org.argouml.uml.reveng.java

org.argouml.language.java
org.argouml.model

ArgoUML Age Map

JHotDraw Fine-grained Age map

Time Travel + Age Map

October 2000

March 2001

September 2001

March 2002

August 2002

January 2003

July 2003

January 2004

JHotDraw

versions
8

time
40 months

Time Travel + Age Map

October 2000

March 2001

September 2001

March 2002

August 2002

January 2003

July 2003

January 2004

JHotDraw

versions
8

time
40 months

Time Travel + Age Map

October 2000

March 2001

September 2001

March 2002

August 2002

January 2003

July 2003

January 2004

JHotDraw

versions
8

time
40 months

Time Travel + Age Map

October 2000

March 2001

September 2001

March 2002

August 2002

January 2003

July 2003

January 2004

JHotDraw

versions
8

time
40 months

Time Travel + Age Map

October 2000

March 2001

September 2001

March 2002

August 2002

January 2003

July 2003

January 2004

JHotDraw

versions
8

time
40 months

Time Travel + Age Map

October 2000

March 2001

September 2001

March 2002

August 2002

January 2003

July 2003

January 2004

JHotDraw

versions
8

time
40 months

Time Travel + Age Map

October 2000

March 2001

September 2001

March 2002

August 2002

January 2003

July 2003

January 2004

JHotDraw

versions
8

time
40 months

Time Travel + Age Map

October 2000

March 2001

September 2001

March 2002

August 2002

January 2003

July 2003

January 2004

JHotDraw

versions
8

time
40 months

Displaying Design Problems

JDK 1.5 God Classes

Jmol’s Feature Envy

Feature envy

1,500 methods (25%)

Jmol’s Feature Envy

Feature envy

ArgoUML.Model’s Shotgun Surgery Map

Shotgun surgery

Facade
NOM 140/337

PseudostateKind
NOM 6/6

VisibilityKind
NOM 4/4

Model
NOM 28/44

AggregationKind
NOM 3/3

Tool Support

CodeCity

Released
Mar 2008 free

2800+
downloads

codecity.inf.usi.ch

CodeCity

Released
Mar 2008 free

2800+
downloads

CodeCity

codecity.inf.usi.ch

Part VI
Epilogue

Reflections

Reflections

Software Visualization is

Reflections

Software Visualization is

a means to make the intangible tangible

Reflections

Software Visualization is

a means to make the intangible tangible

not so difficult after all

Reflections

Software Visualization is

a means to make the intangible tangible

not so difficult after all

still in its infancy

Reflections

Software Visualization is

a means to make the intangible tangible

not so difficult after all

still in its infancy

an exciting research area

Where do we go from here?

From here to..

Software Visualization 101+
Michele Lanza

REVEAL @ Faculty of Informatics

University of Lugano, Switzerland

