
The Return of the Son of ‘Working
Effectively with Legacy Code’

Michael Feathers
mfeathers @ objectmentor.com

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 2

Topics

  Global Mud
  Componentization
  Scopes of Replacement
  Explicitness of Seams
  Type Cruft
  ‘Tell, Don’t Ask’ and Testable

Design
  FP and Legacy Code
  Resurrecting Code
  Testability and Language

Design (TUC vs. TUF)
  Recoverability and Dynamic

Languages
  Salvage-ability
  The Joy of Legacy Code

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 3

Global Mud

  Once a large system gets too many global variables, it is hard to get rid of them
  The points of use for singletons are too scattered

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 4

Componentization

  Repository Hubs
  Factory Hubs

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 5

Scopes of Replacement

  In any large existing system you have to make pragmatic decisions about where you will break
dependencies:

  System
  Component
  Class
  Method

  Heuristic:
  Wide for coverage, Close for progress

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 6

Seams

A Seam is a place where you can alter behavior in your
program without editing it in that place.

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 7

Seams

  Seeing the seams

double perimeter(Point *polygon, int size)

{

 double result = 0;

 for (int n = 0; n < size; n++) {

 Point next = polygon [(n + 1) % size];

 result += distance (polygon [n], next);

 }

 return result;

}

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 8

Explicit Seams

  Favor explicit factoring for testing
  You may not be able to avoid hacks when first getting a system under test, but you are better

off when you eventually refactor to make your test seams explicit

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 9

Synergy Between Testability & Good Design

  Excessive setup indicates excessive coupling
  Slow tests indicate insufficient granularity or coupling to I/O
  The urge to test private methods indicates granularity issues
  Why

  Tests are a way of understanding code in a documentary fashion.
  Understandability is the essence of good design.

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 10

  A system is only as testable as its linkage with its base types
  Pervasive problem in C++, not quite so much in other languages. Everyone wants to redefine

the base types.
  Valuable system asset:

  Separation of “plain code” from frameworks and libraries.
  Hard to achieve

Type Cruft

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 11

  ‘Tell, Don’t Ask’ minimizes coupling
  It is often far easier to mock outward interfaces than inward interfaces

‘Tell, Don’t Ask’ and Testable Design

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 12

  There is an argument that you really don’t need unit testing in FP
  Pure code has no IO to mock

  Mocking can be useful for replacing computationally intensive bits or providing access to a
place where the effect of some code can be better sensed.

  Polymorphic calls are perfect for system recovery
  The functional alternative is parameterization

Functional Programming and Testability

pageWith :: (ListBoxModel -> ListBoxModel) -> (ListBoxModel -> ListBoxModel)
 -> ListBoxModel -> ListBoxModel

pageWith step select m@(Model _ w) = select $ (iterate step (select m)) !! windowSize w

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 13

  Refactoring tools help
  Wide disparity across the languages

  C#, Java - easy
  C++ - many issues
  C – easier than C++
  Niche static languages – insufficient tool support

  Extract Method and Extract Interface are key

Resurrecting Code

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 14

  Historically, language designers have not thought about the recovery case:
  Programmers will make mistakes.
  Entropy happens 
  Recovery is an important language design consideration

  What is needed:
  Language level support for dependency injection
  Special access for tests (even intra-method)
  Awareness of TUFs and TUCs

Testability and Language Design

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 15

  TUF = Test Unfriendly Feature
  File IO, database access, long computation, message sink to external lib, etc

  TUC = Test Unfriendly Construct
  Static method, non-virtual function, constructor, static initializer blocks, new expressions,

singletons, special generics cases

The Cardinal Rule of Testability

“Never Hide a TUF within a TUC”

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 16

  Will we have less of a problem with dynamically typed languages?
  Explicitness
  The “No Lie” Principle – “Code should never lie to you”
  Ways that code can lie

  People can dynamically replace code in the source
  Addition isn’t a problem
  System behavior should be “what I see in the code plus something else” never “what I

see in the source minus something”
  Weaving and aspects
  Impact on the use of inheritance

  The Fallacy of Restricted Languages

Recoverability and Dynamic Languages

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 17

  How far can we go?
  The organic growth metaphor

  Architecture is more fixed than we expect
  Business logic is often “glued to the edges”

  Selective rewrite of logic is often easier than replacing architecture
  Technologies do make a difference (type cruft, build issues)
  The challenge is in making work within existing systems faster and more deterministic

Salvage-ability of Systems

© 2006-2007 Object Mentor Incorporated. All rights reserved. / Page 18

  What should our stance be?

Reframing Legacy Code

