
Clean Code III
Functions

Object Mentor, Inc.

Copyright © 2008 by Object Mentor, Inc
All Rights Reserved

objectmentor.com

Michael Feathers
channeling

Robert C. Martin

2

The First Line of Organization

  In the early days of programming

  we composed our systems of routines and
subroutines.

  in Fortran it was programs, subprograms, and
functions.

  Nowadays only the function survives.

3

A “Long” function in FitNesse

  Not only is it long, but it’s got

  duplicated code,

  lots of odd strings,

  many strange and inobvious data types and

APIs.

  See how much sense you can make of it in
the next three minutes…

4

A “Long” function in FitNesse 1
 public static String testableHtml(
 PageData pageData,
 boolean includeSuiteSetup
) throws Exception {
 WikiPage wikiPage = pageData.getWikiPage();
 StringBuffer buffer = new StringBuffer();
 if (pageData.hasAttribute("Test")) {
 if (includeSuiteSetup) {
 WikiPage suiteSetup =
 PageCrawlerImpl.getInheritedPage(
 SuiteResponder.SUITE_SETUP_NAME, wikiPage
);
 if (suiteSetup != null) {
 WikiPagePath pagePath =
 suiteSetup.getPageCrawler().getFullPath(suiteSetup);
 String pagePathName = PathParser.render(pagePath);
 buffer.append("!include -setup .”)
 .append(pagePathName)
 .append("\n");
 }
 }
 WikiPage setup =
 PageCrawlerImpl.getInheritedPage("SetUp", wikiPage);

5

A “Long” function in FitNesse 2
 if (setup != null) {
 WikiPagePath setupPath =
 wikiPage.getPageCrawler().getFullPath(setup);
 String setupPathName = PathParser.render(setupPath);
 buffer.append("!include -setup .”)
 .append(setupPathName)
 .append("\n");
 }
 }
 buffer.append(pageData.getContent());
 if (pageData.hasAttribute("Test")) {
 WikiPage teardown =
 PageCrawlerImpl.getInheritedPage("TearDown", wikiPage);
 if (teardown != null) {
 WikiPagePath tearDownPath =
 wikiPage.getPageCrawler().getFullPath(teardown);
 String tearDownPathName = PathParser.render(tearDownPath);
 buffer.append("\n”)
 .append("!include -teardown .”)
 .append(tearDownPathName)
 .append("\n");
 }
 if (includeSuiteSetup) {
 WikiPage suiteTeardown =
 PageCrawlerImpl.getInheritedPage(
 SuiteResponder.SUITE_TEARDOWN_NAME,
 wikiPage
);

6

A “Long” function in FitNesse 3
 if (suiteTeardown != null) {

 WikiPagePath pagePath =

 suiteTeardown.getPageCrawler().getFullPath(suiteTeardown);

 String pagePathName = PathParser.render(pagePath);

 buffer.append("!include -teardown .")

 .append(pagePathName)

 .append("\n");

 }

 }

 }

 pageData.setContent(buffer.toString());

 return pageData.getHtml();

 }

7

How did you do?

  Do you understand the function after three minutes

of study?

   Probably not.

  There’s too much going on in there,

  at too many different levels of abstraction.

  There are strange strings

  odd function calls

  doubly nested if statements controlled by flags.

  Ick!

8

Nothing up my sleve…

  With just a few simple

  method extractions,

  some renaming,

  and a little restructuring,

   I was able to capture the intent of the
function.

  See if you can understand the result in the
next 3 minutes?

9

Refactored Function
 public static String renderPageWithSetupsAndTeardowns(
 PageData pageData, boolean isSuite
) throws Exception {
 boolean isTestPage = pageData.hasAttribute("Test");
 if (isTestPage) {
 WikiPage testPage = pageData.getWikiPage();
 StringBuffer newPageContent = new StringBuffer();
 includeSetupPages(testPage, newPageContent, isSuite);
 newPageContent.append(pageData.getContent());
 includeTeardownPages(testPage, newPageContent, isSuite);
 pageData.setContent(newPageContent.toString());
 }

 return pageData.getHtml();
 }

10

You probably don’t understand it all.

  Still you probably understand that it:

  includes setup and teardown pages into a test
page,

  renders that page into HTML.

11

What’s more…

  You also probably realize:

  That this function belongs to some kind of web-based
testing framework.

  Divining that information from the refactored function
is pretty easy,

  but it’s pretty well obscured by the initial code.

12

So what is the magic?

  What is it that makes the refactored function easy to

read and understand?

  How can we make a function communicate its
intent?

  What attributes can we give our functions that will
allow a casual reader to intuit the kind of program
they live inside?

Small!

The First Rule of Functions.

14

The rules of functions:

  The first rule:

  They should be small.

  The second rule:

  They should be smaller than that.

15

A Screenful?

   In the ‘80s we used to say that a function should be

no bigger than a screenful.

  Of course VT100 screens were 24 lines by 80

columns,

  and our editors used 4 lines for administrative

purposes.

  Nowadays with a cranked down font and a nice big
monitor

   you can fit 150 characters on a line, and a 100 lines

or more on a screen. Lines should not be 150
characters long.

16

Smaller Than a Screenful

  Functions should not be 100 lines long.

  Functions should hardly ever be 20 lines

long.

  Indeed, the refactored function was too long.

  It should have been:

 public static String renderPageWithSetupsAndTeardowns(
 PageData pageData, boolean isSuite) throws Exception {
 if (isTestPage(pageData))
 includeSetupAndTeardownPages(pageData, isSuite);
 return pageData.getHtml();
 }

17

Blocks

  Smallness implies that blocks within:

  if statements,

  else statements,

  while statements,

  and etc.,

  should be one line long.

  Probably that line should be a function call.

  Not only does this keep the function small;

  but it also adds documentary value

18

Indenting

  Smallness also implies:

  functions should not be large enough to hold
nested structures.

  Therefore the indent level of a function should
not be greater than one or two.

  This, of course, makes the functions easier to
read and understand.

Do One Thing

20

Functions should do one thing.

  They should do it well.

  They should do it only.

21

Doing More Than One Thing

  The original code does lots more than one thing.

  It’s creating buffers,

  fetching pages,

  searching for inherited pages,

  rendering paths,

  appending arcane strings,

  and generating HTML,

  among other things.

  The re-refactored code is doing one simple thing.

  including setups and teardowns into test pages.

22

Or is it?

  It’s easy to make the case that it’s doing 3

things:

  Determine whether the page is a test page.

  If so, include setups and teardowns.

  Render the page in HTML.

  So which is it?

  Is the function doing one thing,

  or three things?

23

All At Same Level…

  The steps are one level of abstraction below the

name of the function.

  A brief TO paragraph:

  TO RenderPageWithSetupsAndTeardowns we:

  check to see if the page is a test page

  and if so we include the setups and teardowns.

  In either case we render the page in HTML.

   If a function’s steps are one level below the stated
name of the function,

  then the function is doing one thing.

24

The reason we write functions is to:

  Decompose a larger concept

  (i.e. the name of the function)

  into a set of steps at the next level of

abstraction.

25

Doing One Thing!

   It should be very clear that

  The original code contains steps at many different
levels of abstraction.

  So it is clearly doing more than one thing.

  Even the first refactoring has two levels of

abstraction,

   as proved by our ability to shrink it down.

  But it would be very hard to meaninfully shrink the
final.

  We could extract the if statment into a function named

includeSetupsAndTeardownsIfTestPage,

  but that simply restates the code without changing the

level of abstraction.

26

Doing One Thing!

  You can tell that a function is doing more

than “one thing”

  if you can extract a function from it

  with a name that is not merely a restatement

of its implementation.

27

Reading code from top to bottom.

  We want the code to read like a top-down narrative.

  We want every function to be followed by those at

the next level of abstraction,

  We can read the program, descending one level of

abstraction at a time.

  We want to read the program as if it were a set of

TO paragraphs,

  each of which describes the current level of

abstraction

  and references subsequent TO paragraphs at the

next level down.

28

To Paragraphs:

  To include the setups and teardowns we

  include setups,

  then include the test page content,

  then include the teardowns.

  To include the setups we

  include the suite setup if this is a suite,

  then include the regular setup.

  To include the suite setup we

  search the parent hiearchy for the “SuiteSetUp” page

  add an !include with the path of that page.

  To search the parent...

29

That’s how you do ONE THING.

Use descriptive names.

31

Example

   I changed the name of our example function

  from testableHtml

  To renderPageWithSetupsAndTeardowns.

  This is a far better name.

   I also gave the private methods a descriptive name

  such as isTestable

  includeSetupAndTeardownPages.

   It is hard to overestimate the value of good names.

32

Remember Ward’s principle:

  “You know you are working on clean code

when each routine turns out to be pretty
much what you expected.”

  Half the battle to achieving that principle is

  choosing good names

  for small functions

  that do one thing.

33

The Naming Heuristic

  The smaller and more focused a function is,

  the easier it is to choose a descriptive name.

  Conversely, if you can’t choose a descriptive

name

  Your function is probably too big

  And does more than ONE THING.

34

Long Names

  Don’t be afraid to make a name long.

  A long descriptive name is better than

  a short enigmatic name.

  a long descriptive comment.

  Use a naming convention that allows multiple words
to be easily read in the function names

  Like Camel Case or Underscores.

  IncludeSetUpAndTearDown

  Include_setup_and_teardown

  Make use of those multiple words to give the
function a name that says what it does.

35

It Takes Time

  Don’t be afraid to spend time choosing a name.

   Indeed, you should try several different names

  and read the code with each in place.

  Modern IDEs like Eclipse or IntelliJ make it trivial to

change names.

  Use one of those IDEs and experiment with different

names until you find one that is as descriptive as
you can make it.

36

Names and Design

  Choosing descriptive names will clarify the

design of the module in your mind,

  and help you to improve it.

  Hunting for a good name often results in a
favorable restructuring of the code.

37

Consistent Names

  Use the same phrases, nouns, and verbs in the

function names you choose for your modules.

  Consider, for example, the names

  includeSetupAndTeardownPages,

  includeSetupPages,

  includeSuiteSetupPage,

  includeSetupPage.

  The similarity of those names allows the sequence to
tell a story.

  Indeed, if I showed you just the sequence above,
you’d ask yourself:

  “What happened to includeTeardownPages,

includeSuiteTeardownPage, and includeTeardownPage?”

  How’s that for being “...pretty much what you expected.”

No more than three arguments.

39

How many arguments?

  he ideal number of arguments for a function is zero

(niladic).

  Next comes one (monadic),

  Followed closely by two (dyadic).

  Three arguments (triadic) should be avoided where

possible.

  More than three (polyadic) requires very special

justification,

   and then shouldn’t be used anyway.

40

Arguments are hard.

  They take a lot of conceptual power.

  That’s why I got rid of almost all of them from the

example.

  Consider, for example, the StringBuffer in the

example.

  We could have passed it around as an argument

  rather than making it an instance variable;

  but then our readers would have had to interpret it

each time they saw it.

41

Arguments are hard.

  When you are reading the story told by the module,

  includeSetupPage() is easier to understand than

  includeSetupPageInto(newPageContent).

  The argument is at a different level of abstraction
than the function name,

  and forces you to know a detail (i.e. StringBuffer) that

isn’t particularly important at that point.

42

Output arguments

  Harder to understand than input arguments.

  We are used to the idea of information going

in to the function through arguments

  and out through the return value.

  We don’t usually expect information to be
going out through the arguments.

  So output arguments often cause us to do a

double-take.

43

Common Monadic Forms

  There are two common reasons to pass a single

argument into a function.

  You may be asking a question about that argument as

in: boolean fileExists(“MyFile”).

  Or you may be operating on that argument,

  transforming it into something else and returning it.

  For example: InputStream fileOpen(“MyFile”) transforms a

String into an InputStream return value.

  These two uses are what readers expect when they
see a function.

  You should choose names that make the distinction

clear.

44

Flag Arguments

  Passing a boolean into a function is a truly

terrible practice.

  It immediatly complicates the signature of the

method,

  loudly proclaiming that this function does

more than one thing.

  It does one thing if the flag is true, and

another if the flag is false!

45

Dyadic Functions

  A function with two arguments is harder to

understand than a monadic function.

  writeField(name) is easier to understand than

writeField(outputStream, name).

  the first glides past the eye. easily depositing its

meaning.

  The second requires a short pause until we learn

to ignore the first parameter.

  We should never ignore any part of the code.

  The parts we ignore are where the bugs will hide.

46

Triads

  Functions that take three arguments are significantly

harder to understand than dyads.

  The issues of ordering, pausing, and ignoring are

more than doubled.

  Consider the common overload of assertEquals that

takes three arguments:

  assertEquals(message, expected, actual).

  How many times have you read the message and

thought it was the expected?

  I have stumbled and paused over that particular triad

many times.

  In fact, every time I see it I do a double-take and then

learn to ignore the message.

No side-effects.

48

Side-effects are lies.

  Your function promises to do one thing,

  but it also does other, hidden, things.

  to the variables of it’s own class.

  to the parameters passed into the function,

  to system globals.

  They are devious and damaging mistruths
that result in

  strange temporal couplings

  and order dependencies.

49

Side Effects

  Consider the seemingly innocuous function

that uses a standard algorithm to match a
userName to a password. It returns true if they
match, and false if anything goes wrong.

  But it also has a side-effect.

  Can you spot it?

50

Side Effects
public class UserValidator {

 private Cryptographer cryptographer;

 public boolean checkPassword(String userName, String password) {

 User user = UserGateway.findByName(userName);

 if (user != User.NULL) {

 String codedPhrase = user.getPhraseEncodedByPassword();

 String phrase = cryptographer.decrypt(codedPhrase, password);

 if ("Valid Password".equals(phrase)) {

 Session.initialize();

 return true;

 }

 }

 return false;

 }

}

51

Side Effects

  The side-effect is

  the call to Session.initialize(),

   of course.

  The checkPassword function, by its name, says that
it checks the password.

  The name does not imply that it initializes the session.

  So a caller who believes what the name of the

function says, runs the risk of erasing the existing
session data when they decide to check the validity of
the user.

52

Temporal Couplings

  The side-effect creates a temporal coupling.

  checkPassword can only be called at certain times

  (i.e. when it is safe to initialize the session).

  If it is called out of order,

  session data may be inadvertently lost.

  Temporal couplings are confusing,

  especially when hidden as a side effect.

   If you must have a temporal coupling,

  you should make it clear in the name of the function.

  In this case we might rename the function

checkPasswordAndInitializeSession,

  though that certainly violates “Do One Thing”.

Command Query Separation

54

Asking vs. Telling

  Functions should either

  do something,

  or answer something,

  but not both.

  Either your function should

  change the state of an object,

  or it should return some information about that

object.

  Doing both often leads to confusion.

55

Example

  Consider, for example, the following function:

 public boolean set(String attribute, String value);

  It sets the value of a named attribute

  returns true if it is successful

  false if no such attribute exists.

56

Example

  This leads to odd statements like this:

 if (set("username", "unclebob"))...

  What does that mean?

  Is it asking whether the “username” attribute was

  previously set to “unclebob”?

  successfully set to “unclebob”?

  It’s hard to infer the meaning from the call because
it’s not clear whether the word “set” is a verb or an
adjective.

57

Example

  The author intended set to be a verb,

  but in the context of the if statement it feels like an
adjective.

  So the statement reads as:

  “If the username attribute was previously set to unclebob”

  and not as:

  “set the username attribute to unclebob and if that worked

then...”.

  We could try to resolve this by renaming the set

function to setAndCheckIfExists,

  but that doesn’t much help the readability of the if statement.

58

Example

  The real solution is to separate the command

from the query

  so that the ambiguity cannot occurr.

if (attributeExists("username")) {

 setAttribute("username", "unclebob");

 ...

}

Prefer exceptions to returning
error codes.

60

Returning errror codes

  A subtle violation of command query separation.

   It promotes commands being used as expressions

in the predicates of if statements.

   if (deletePage(page) == E_OK)

  This leads to deeply nested structures.

  The caller must deal with the error immediatly.

61

Returning Error Codes
if (deletePage(page) == E_OK) {
 if (registry.deleteReference(page.name) == E_OK) {
 if (configKeys.deleteKey(page.name.makeKey()) == E_OK){
 logger.log("page deleted");
 } else {
 logger.log("configKey not deleted");
 }
 } else {
 logger.log("deleteReference from registry failed");
 }
} else {
 logger.log("delete failed");
 return E_ERROR;
}

62

Using Exceptions

  If you use exceptions then

  the error processing code can be separated
from the happy-path code,

  and can be simplified:
try {
 deletePage(page);
 registry.deleteReference(page.name);
 configKeys.deleteKey(page.name.makeKey());
}
catch (Exception e) {
 logger.log(e.getMessage());
}

63

Extract try/catch blocks.

  Try/catch blocks are ugly in their own right.

   They confuse the structure of the code

  and mix error processing with normal

processing.

  So it is better to extract the bodies of the try

and catch blocks out into functions of their
own.

64

Extract try/catch blocks
 public void delete(Page page) {
 try {
 deletePageAndAllReferences(page);
 }
 catch (Exception e) {
 logError(e);
 }
 }

 private void deletePageAndAllReferences(Page page) throws Exception {
 deletePage(page);
 registry.deleteReference(page.name);
 configKeys.deleteKey(page.name.makeKey());
 }

 private void logError(Exception e) {
 logger.log(e.getMessage());
 }

65

Error handling is one thing.

  A function that handles errors should do

nothing else.

  This implies that the keyword try should be

the very first word in the function;

  and that there should be nothing after the

catch/finally blocks.

66

Structured Programming

  Dijkstra said:

  every function,

  and every block within a function,

  should have one entry and one exit.

  Following these rules means

  there should only be one return statement in a

function,

  no break or continue statements in a loop,

  and never, ever, any goto statements.

67

Structured Programming Eclipsed

  While we are sympathetic to the goals and

disciplines of structured programming,

  those rules serve little benefit when functions are very

small.

  It is only in larger functions that such rules provide

significant benefit.

  So in small functions the occasional:

  multiple return,

  break,

  or continue statement

  does no harm,

  and can sometimes even be more expressive than the single

entry, single exit rule.

  But goto should still be avoided.

Conclusion

69

Domain Specific Languages

  Every system is built from a domain specific

language

   designed by the programmers to describe

that system.

  Functions are the verbs of that language,

  classes are the nouns.

  The art of programming is, and has always
been, the art of language design.

70

Programs as Stories

  Master programmers think of systems as stories to

be told

  rather than programs to be written.

  They use the facilities of their chosen programming
language

  to construct a much richer and more expressive DSL

that they use to tell that story.

  Part of that DSL is the hierarchy of functions that

describe all the actions that take place within that
system.

  In an artful act of recursion, those actions are written
to use the very DSL they define to tell their own small
part of the story.

71

The “Clean Code” project.

  Articles:

  The “Args” article.

  The “Clean Code” book.

72

Contact Information

  Robert C. Martin

 unclebob@objectmentor.com

  Website:
 www.objectmentor.com

  FitNesse:
 www.fitnesse.org

