zuhlke

empowering ideas

Old School

Techniques that still work no matter how hard we try
to forget them

Slide 1
21 July 2009

Keith Braithwaite
© Zihlke 2009

“I come as an entertainer,
not as a salesman. | want
you to enjoy these ideas
because | enjoy them”—

Alan Watts

|||||||||
Slide 2
oooooooooo

© Zishlke 2009

If IT were a person...

It would be diagnosed with

= ADHD

= Retrograde amnesia

= OCD

zuhlke

empowering ideas

0ld School
Slide 3
21 July 2009

Keith Braithwaite
© Zihlke 2009

If IT were a person...

zuhlke

empowering ideas

It would be diagnosed with
= ADHD

— We have difficulty retaining focus on the job at hand
- We are very easily distracted by 00/, shiny!

= Retrograde amnesia
= OCD

0ld School
Slide 4
21 July 2009

Keith Braithwaite
© Zihlke 2009

If IT were a person...

zuhlke

empowering ideas

It would be diagnosed with
= ADHD

- We have difficulty retaining focus on the job at hand
— We are very easily distracted by

= Retrograde amnesia
— We don’t recall our past

= OCD

0ld School
Slide 5
21 July 2009

Keith Braithwaite
© Zihlke 2009

If IT were a person...

zuhlke

empowering ideas

It would be diagnosed with
= ADHD

- We have difficulty retaining focus on the job at hand
— We are very easily distracted by

= Retrograde amnesia
— We don’t recall our past
— We don’t recall our past

= OCD

0ld School
Slide 6
21 July 2009

Keith Braithwaite
© Zihlke 2009

It would be diagnosed with
ADHD

- We have difficulty retaining focus on the job at hand
— We are very easily distracted by

Retrograde amnesia
- We don’t recall our past
- We don’t recall our past

OCD

- We follow rituals independent of their effectiveness

0ld School
Slide 7
21 July 2009

Keith Braithwaite
© Zihlke 2009

It would be diagnosed with
ADHD

- We have difficulty retaining focus on the job at hand
— We are very easily distracted by

Retrograde amnesia
- We don’t recall our past
- We don’t recall our past

OCD

— We follow rituals independent of their effectiveness

0ld School
Slide 8
21 July 2009

Keith Braithwaite
© Zihlke 2009

“If we could only learn the
right lessons from the
successes of the past we
would not need to learn from
the failures ”

|||||||||
Slide 9
oooooooooo

© Zishlke 2009

Zombies

zuhlke

empowering ideas

0ld School
Slide 10
21 July 2009

Keith Braithwaite
© Zihlke 2009

Given half a chance they will eat your brain
Code the works “first time”
Structured Programming

These, and others, we should forget

0ld School
Slide 11
21 July 2009

Keith Braithwaite
© Zihlke 2009

Code that works “first time”

zuhlke

empowering ideas

City and Guilds COBOL
= 3 attempts to compile, run and test or fail

There was a time when this sort of thing made sense

0ld School
Slide 12
21 July 2009

Keith Braithwaite
© Zihlke 2009

Code that works “first time”

There was a time when this sort of thing made sense

zuhlke

empowering ideas

0ld School
Slide 13
21 July 2009

Keith Braithwaite
© Zihlke 2009

Code that works “first time”

zuhlke

empowering ideas

Jerry Weinberg tells of being told that

= The computer (singular) earns more than you do, so

behave accordingly

0ld School
Slide 14
21 July 2009

Keith Braithwaite
© Zihlke 2009

Code that works “first time”

zuhlke

empowering ideas

The computer learns more than you, behave accordingly
= cost(processor time) >> cost(developer time)

= Cycle time to get feedback—hours to days

0ld School
Slide 15
21 July 2009

Keith Braithwaite
© Zihlke 2009

The computer learns more than you, behave accordingly
cost(processor time) >> cost(developer time)
Cycle time to get feedback—hours to days

In fact, you earn much more than the computer

0ld School
Slide 16
21 July 2009

Keith Braithwaite
© Zihlke 2009

The computer learns more than you, behave accordingly
cost(processor time) >> cost(developer time)
Cycle time to get feedback—hours to days

You earn much more than the computer, behave accordingly
cost(processor time) << cost(developer time)
Cycle time to get feedback—milliseconds to minutes

A top-end dev workstation amortised over 3 years
- &1 per day
- 2 or 3 orders of magnitude cheaper than a programmer

0ld School
Slide 17
21 July 2009

Keith Braithwaite
© Zihlke 2009

Code that works “first time”

low

zuhlke

empowering ideas

0ld School
Slide 18
21 July 2009

Keith Braithwaite
© Zihlke 2009

Code that works “first time”

zuhlke

empowering ideas

Uncertainty high

Disagreement

low

0ld School
Slide 19
21 July 2009

Keith Braithwaite
© Zihlke 2009

Code that works “first time”

Sense
Analyze
Respond

Sense
Categorize

Respond

Act
Sense

Respond

Sense
Analyze
Respond

zuhlke

empowering ideas

0ld School
Slide 20
21 July 2009

Keith Braithwaite
© Zihlke 2009

Structured Programming

A “sub-program” had:

= One entry point
= Sequence

= Iteration

= Alternation

= One exit point

zuhlke

empowering ideas

0ld School
Slide 21
21 July 2009

Keith Braithwaite
© Zihlke 2009

That was a big improvement over spaghetti code
Especially when flow of control was DIY
10 IF (SUM .LE. LLIMIT) THEN

NUMBER = NUMBER + 1

SUM SUM + NUMBER
GO TO 10

END IF

0ld School
Slide 22
21 July 2009

Keith Braithwaite
© Zihlke 2009

Structured Programming

zuhlke

empowering ideas

But this sort of thing makes no sense:

public Object doTrickyStuff Object a, Object b’
Object result = null;
try |
if (obscureCondition =
result = getStuff ;
} else {
result = getStuff ;

~

} catch Exception e |
result = specialResult’ ;

return result;

0ld School
Slide 23
21 July 2009

Keith Braithwaite
© Zihlke 2009

Old School: things we got right

zuhlke

empowering ideas

0ld School
Slide 24
21 July 2009

Keith Braithwaite
© Zihlke 2009

Old School: things we got right

zuhlke

empowering ideas

ne Year Growth Plan

January February March April

June

July

1238 1332 1,553
4

22086 25,760

1973

4

281 210

7151

155517

1811
47
30,045
2300
47
328,002
8340
181394

1955
S0
32448
2484
50
354242
2007
1959205

2279
58
37,846
2896
58
413187
10505
228503

2481
62
40,873
3127
62
446,242
11.385
245,783

2,657
87
44142
3377
67

481 247
12,352
266,525

2,862
72
47,673
3847
72
520,495
13,232
287247

0ld School
Slide 25
21 July 2009

Keith Braithwaite
© Zihlke 2009

Old School: things we got right

Analysis

Architecture

Modelling

zuhlke

empowering ideas

0ld School
Slide 26
21 July 2009

Keith Braithwaite
© Zihlke 2009

I've been a professional programmer for about 15 years
And an amateur for years before that
What follows are ideas that | learned very early on

And still use day-by-day

0ld School
Slide 27
21 July 2009

Keith Braithwaite
© Zihlke 2009

Analysis

zuhlke

empowering ideas

There used to be this thing called Systems Analysis
= It used to be a core skill

= But it got a bad name

0ld School
Slide 28
21 July 2009

Keith Braithwaite
© Zihlke 2009

Analysis

So, we stopped doing it

= Agile gave some of us an excuse

zuhlke

empowering ideas

0ld School
Slide 29
21 July 2009

Keith Braithwaite
© Zihlke 2009

We had to re-invent understanding

behaviour driven development
— (AKA TDD the way you were always supposed to do it)

Domain Driven Design

- “Until I started working in "enterprise IT" | didn't realise that people didn't
do this. | suppose that this is an important book, but it's depressing that this
is so”—Nat Pryce

0ld School
Slide 30
21 July 2009

Keith Braithwaite
© Zihlke 2009

Domain Driven Design

“Leading software designers have recognized domain
modeling and design as critical topics for at least 20
years, yet surprisingly little has been written about what

needs to be done or how to do it.”—Evans

LNCS 2813 1

Forward-thinking strategies for improving

Conce| fdvanced
Mode] [Obiect-Oriented

22nd International (
Chicago, IL, USA, Oct
Proceedings

Jan

Analysis & Design |

1es J. Odell

Software

R equirements

& Specificy

a lexicon of practice, principles

A\ NALYSIS
PATTERNS

REUSABLE OBJECT MODELS

il
| MARTIN FOWLER

0ld School
Slide 31
21 July 2009

Keith Braithwaite
© Zihlke 2009

Analysis

These days we “conquer and divide”

= We can discover the domain

= Which is great!

zuhlke

empowering ideas

0ld School
Slide 32
21 July 2009

Keith Braithwaite
© Zihlke 2009

But still. ..

Objects in the world have states that they move between
- We might want to talk explicitly about them

Some events must occur in certain orders
- We might want to talk explicitly about that

0ld School
Slide 33
21 July 2009

Keith Braithwaite
© Zihlke 2009

Analysis

zuhlke

empowering ideas

Consider a system built out of domains with various intents

0ld School
Slide 34
21 July 2009

Keith Braithwaite
© Zihlke 2009

Analysis

Then we would know where to put the analysis

There’s an echo of this in Enterprise stacks

zuhlke

empowering ideas

0ld School
Slide 35
21 July 2009

Keith Braithwaite
© Zihlke 2009

Architecture

No-one quite agrees on what this is

So it has become everything and nothing

zuhlke

empowering ideas

0ld School
Slide 36
21 July 2009

Keith Braithwaite
© Zihlke 2009

Seems as if it should have something to do with:
Compromise
Communication
Habitability
Reconciliation
Comfort
Ease of construction

And not:

0ld School
Slide 37
21 July 2009

Which stack to fit in between the web server and database

Keith Braithwaite
© Zihlke 2009

Architecture

“Stacks” an over-used metaphor

zuhlke

empowering ideas

0ld School
Slide 38
21 July 2009

Keith Braithwaite
© Zihlke 2009

Architecture

“Stacks” an over-used metaphor

zuhlke

empowering ideas

0ld School
Slide 39
21 July 2009

Keith Braithwaite
© Zihlke 2009

Architecture

zuhlke

empowering ideas

“Stacks” an over-used metaphor

Point-to-point

Multicast
Point-to-point
Multicast

Point-to-point

0ld School
Slide 40
21 July 2009

Keith Braithwaite
© Zihlke 2009

Architecture

zuhlke

empowering ideas

0ld School
Slide 41
21 July 2009

Keith Braithwaite
© Zihlke 2009

Architecture

zuhlke

empowering ideas

0ld School
Slide 42
21 July 2009

Keith Braithwaite
© Zihlke 2009

Architecture

zuhlke

empowering ideas

0ld School
Slide 43
21 July 2009

Keith Braithwaite
© Zihlke 2009

Architecture got a bad name

0ld School
Slide 44
21 July 2009

Keith Braithwaite
© Zihlke 2009

Architecture

Non-the-less, every system has an architecture

= It might be worth knowing how to talk about that

zuhlke

empowering ideas

0ld School
Slide 45
21 July 2009

Keith Braithwaite
© Zihlke 2009

Modelling

We really lost the plot on this one

GeneralzableElement

_onnedElement

| Mo delElementimpl

I Namespaczimpl |

&

GeneralzableElementimpl

public boolean _isRoat
public boolean _isAbdract
public boolean isle &

JaN

F eature

Parameter

public\isbilbykind _wisibiliby
ublic ScopekKind _anwnerSwmpe

public Expresson _default\alue
ublic ParameteDiredionkind kind

T T

truchuralF ato--" StructuralFeature
e publicMutiplicity _rmutip ity 5
0= publicChange aleKind _changeable ‘
= publicScopeKind _targetScope
Classifier BehavioralF eature
= publicint nawatr=0 ‘{P
0.7 PN R Adtribute ™

zuhlke

empowering ideas

0ld School
Slide 46
21 July 2009

Keith Braithwaite
© Zihlke 2009

Modelling

Engineers Model

zuhlke

empowering ideas

0ld School
Slide 47
21 July 2009

Keith Braithwaite
© Zihlke 2009

Engineers Model
Models are useful for what they leave out
Faster, cheaper than building a prototype
Models Answer Questions

More quickly and easily than the real thing would

0ld School
Slide 48
21 July 2009

Keith Braithwaite
© Zihlke 2009

Engineers Model
Models are useful for what they leave out
Faster, cheaper than building a prototype
Models Answer Questions

More quickly and easily than the real thing would

0ld School
Slide 49
21 July 2009

Keith Braithwaite
© Zihlke 2009

Modelling

We got this wrong
= We tried to make out models useful by adding stuff
= Our models are often harder to build, and slower

= Out models too often don’t answer questions

STATE ::= patients | fields | setup | ready | beam_on
EVENT ::= select_patient | select_field | enter | start | stop | ok | intlk
FSM == (STATE x EVENT) + STATE

no_change, transitions, control: FSM

control = no_change @ transitions
no_change = { s: STATE; e: EVENT e (s, e)—s }
transitions = { (patients, enter) + fields,

(fields, select_patient) — patients, (fields, enter) — setup,

(setup, select_patient) — patients, (setup, select_field) ~ fields, (setup, ok) ~ ready,

(beam_on, stop) + ready, (beam_on, intlk) — setup }

(ready, select_patient) — patients, (ready, select_field) — fields, (ready, start) = beam_on, (ready, intlk) — setup,

zuhlke

empowering ideas

0ld School
Slide 50
21 July 2009

Keith Braithwaite
© Zihlke 2009

Modelling

There is a way forward, when appropriate

PPP AGGR B8 S

AT ALY BAREG LcoVar Itemiafull

ALY VIBuLde lhastdiweoaVas Ttam ()

ALY viet Datediscodiecw ALD GLUCO ALAM
MD_vier Giweediope Imdicator (7))
ALY viet ladiepehveilebie(faise)
V1 OGRD_widGet _Dafrs

LD _viet_leattsvefistocyitewm))

P — - .:‘.
mnm

A40.

<d@

zuhlke

empowering ideas

0ld School
Slide 51
21 July 2009

Keith Braithwaite
© Zihlke 2009

Modelling

But life, sadly, turns out to be too short

zuhlke

empowering ideas

0ld School
Slide 52
21 July 2009

Keith Braithwaite
© Zihlke 2009

These were good ideas
They still are good ideas

We turned against them because they were misapplied
We can do better than that

0ld School
Slide 53
21 July 2009

Keith Braithwaite
© Zihlke 2009

