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Old School

Techniques that still work no matter how hard we try
to forget them

Slide 1
21 July 2009

Keith Braithwaite
© Zihlke 2009




“I come as an entertainer,
not as a salesman. | want
you to enjoy these ideas
because | enjoy them”—

Alan Watts
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If IT were a person...

It would be diagnosed with

= ADHD

= Retrograde amnesia

= OCD
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If IT were a person...
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It would be diagnosed with
= ADHD

— We have difficulty retaining focus on the job at hand
- We are very easily distracted by 00/, shiny!

= Retrograde amnesia
= OCD
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It would be diagnosed with
ADHD

- We have difficulty retaining focus on the job at hand
— We are very easily distracted by

Retrograde amnesia
- We don’t recall our past
- We don’t recall our past

OCD

- We follow rituals independent of their effectiveness
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“If we could only learn the
right lessons from the
successes of the past we
would not need to learn from
the failures ”
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Zombies
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Given half a chance they will eat your brain
Code the works “first time”
Structured Programming

These, and others, we should forget
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Code that works “first time”
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City and Guilds COBOL
= 3 attempts to compile, run and test or fail

There was a time when this sort of thing made sense
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Code that works “first time”

There was a time when this sort of thing made sense
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Code that works “first time”
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Jerry Weinberg tells of being told that

= The computer (singular) earns more than you do, so

behave accordingly
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Code that works “first time”
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The computer learns more than you, behave accordingly
= cost(processor time) >> cost(developer time)

= Cycle time to get feedback—hours to days
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The computer learns more than you, behave accordingly
cost(processor time) >> cost(developer time)
Cycle time to get feedback—hours to days

In fact, you earn much more than the computer
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The computer learns more than you, behave accordingly
cost(processor time) >> cost(developer time)
Cycle time to get feedback—hours to days

You earn much more than the computer, behave accordingly
cost(processor time) << cost(developer time)
Cycle time to get feedback—milliseconds to minutes

A top-end dev workstation amortised over 3 years
- &1 per day
- 2 or 3 orders of magnitude cheaper than a programmer
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Code that works “first time”

low

zuhlke

empowering ideas

0ld School
Slide 18
21 July 2009

Keith Braithwaite
© Zihlke 2009




Code that works “first time”
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Uncertainty high

Disagreement

low
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Code that works “first time”

Sense
Analyze
Respond

Sense
Categorize

Respond

Act
Sense

Respond

Sense
Analyze
Respond
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Structured Programming

A “sub-program” had:

= One entry point
= Sequence

= Iteration

= Alternation

= One exit point
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That was a big improvement over spaghetti code
Especially when flow of control was DIY
10 IF (SUM .LE. LLIMIT) THEN

NUMBER = NUMBER + 1

SUM SUM + NUMBER
GO TO 10

END IF
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Structured Programming
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But this sort of thing makes no sense:

public Object doTrickyStuff Object a, Object b’
Object result = null;
try |
if (obscureCondition =
result = getStuff ;
} else {
result = getStuff ;

~

} catch Exception e |
result = specialResult’ ;

return result;
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Old School: things we got right
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Old School: things we got right
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ne Year Growth Plan

January  February  March  April

June

July

1238 1332 1,553
4

22086 25,760

1973

4

281 210

7151

155517

1811
47
30,045
2300
47
328,002
8340
181394

1955
S0
32448
2484
50
354242
2007
1959205

2279
58
37,846
2896
58
413187
10505
228503

2481
62
40,873
3127
62
446,242
11.385
245,783

2,657
87
44142
3377
67

481 247
12,352
266,525

2,862
72
47,673
3847
72
520,495
13,232
287247
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Old School: things we got right

Analysis

Architecture

Modelling
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I've been a professional programmer for about 15 years
And an amateur for years before that
What follows are ideas that | learned very early on

And still use day-by-day
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Analysis
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There used to be this thing called Systems Analysis
= It used to be a core skill

= But it got a bad name
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Analysis

So, we stopped doing it

= Agile gave some of us an excuse
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We had to re-invent understanding

behaviour driven development
— (AKA TDD the way you were always supposed to do it)

Domain Driven Design

- “Until I started working in "enterprise IT" | didn't realise that people didn't
do this. | suppose that this is an important book, but it's depressing that this
is so”—Nat Pryce
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Domain Driven Design

“Leading software designers have recognized domain
modeling and design as critical topics for at least 20
years, yet surprisingly little has been written about what

needs to be done or how to do it.”—Evans
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Analysis

These days we “conquer and divide”

= We can discover the domain

= Which is great!
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But still. ..

Objects in the world have states that they move between
- We might want to talk explicitly about them

Some events must occur in certain orders
- We might want to talk explicitly about that
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Analysis
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Consider a system built out of domains with various intents

0ld School
Slide 34
21 July 2009

Keith Braithwaite
© Zihlke 2009




Analysis

Then we would know where to put the analysis

There’s an echo of this in Enterprise stacks
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Architecture

No-one quite agrees on what this is

So it has become everything and nothing
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Seems as if it should have something to do with:
Compromise
Communication
Habitability
Reconciliation
Comfort
Ease of construction

And not:
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Architecture

“Stacks” an over-used metaphor
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Architecture

“Stacks” an over-used metaphor
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Architecture
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“Stacks” an over-used metaphor

Point-to-point

Multicast
Point-to-point
Multicast

Point-to-point
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Architecture
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Architecture
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Architecture
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Architecture got a bad name
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Architecture

Non-the-less, every system has an architecture

= It might be worth knowing how to talk about that
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Modelling

We really lost the plot on this one

GeneralzableElement
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Modelling

Engineers Model
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Engineers Model
Models are useful for what they leave out
Faster, cheaper than building a prototype
Models Answer Questions

More quickly and easily than the real thing would
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Modelling

We got this wrong
= We tried to make out models useful by adding stuff
= Our models are often harder to build, and slower

= Out models too often don’t answer questions

STATE ::= patients | fields | setup | ready | beam_on
EVENT ::= select_patient | select_field | enter | start | stop | ok | intlk
FSM == (STATE x EVENT) + STATE

no_change, transitions, control: FSM

control = no_change @ transitions
no_change = { s: STATE; e: EVENT e (s, e)—s }
transitions = { (patients, enter) + fields,

(fields, select_patient) — patients, (fields, enter) — setup,

(setup, select_patient) — patients, (setup, select_field) ~ fields, (setup, ok) ~ ready,

(beam_on, stop) + ready, (beam_on, intlk) — setup }

(ready, select_patient) — patients, (ready, select_field) — fields, (ready, start) = beam_on, (ready, intlk) — setup,
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Modelling

There is a way forward, when appropriate
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Modelling

But life, sadly, turns out to be too short

zuhlke

empowering ideas

0ld School
Slide 52
21 July 2009

Keith Braithwaite
© Zihlke 2009




These were good ideas
They still are good ideas

We turned against them because they were misapplied
We can do better than that
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