H#

Succinct, Expressive, Functional

Don Syme,
Principal Researcher
Microsoft Research, Cambridge

Topics

« What is F# about?

 Some Simple F# Programming

» A Taste of Parallel/Reactive with F#

What i1s F# about?

Or: Why is Microsoft investing in functional
programming anyway?

Simplicity

Economics

Fun, Fun and More Fun!

Simplicity

//F# //C#
open System using System;
let a = 2

console.writeLine a namespace ConsoleApplicationl

{

class Program

{

static int a()

{
}
static void Main(string[] args)

{
}

return 2;

console.writeLine(a);

More Noise
Than Signall!

Pleasure Pain

abstract class Command
type Command = Command of (Rover -> unit) {

}

abstract class MarsRoverCommand : Command
Command(fun rover -> rover.Accelerate(-1.0)) {

public virtual void Execute();

let BreakCommand =

protected MarsRover Rover { get; privg
let TurnLeftCommand =

Command(fun rover -> rover.Rotate(-5.0<degs>)) public MarsRoverCommand(MarsRover rove

{
¥

this.Rover = rover;

}

class BreakCommand : MarsRoverCommand

{

public BreakCommand(MarsRover rover)
base(rover)

{
¥

public override void Execute()

{
¥

Rover.Rotate(-5.90);

}

class TurnLeftCommand : MarsRoverCommand

{

public TurnLeftCommand(MarsRover rove

Pleasure

let swap (x, y) = (y, X)

let rotations (x, y, z) =
[(X, ¥, 2);
(z, X, ¥);
(y, z, x)]

let reduce f (x, y, z) =
fx+fy+fz

Pain

Tuple<U,T> Swap<T,U>(Tuple<T,U> t)

{
return new Tuple<U,T>(t.Item2, t.Iteml)

ReadOnlyCollection<Tuple<T,T,T>>
Rotations<T>(Tuple<T,T,T> t)

new ReadOnlyCollection<int>
(new Tuple<T,T,T>[]
{ new Tuple<T,T,T>(t.Iteml,t.Item2,t.Item3)
new Tuple<T,T,T>(t.Item3,t.Iteml,t.Item2)

new Tuple<T,T,T>(t.Item2,t.Item3,t.Iteml)
})s

int Reduce<T>(Func<T,int> f,Tuple<T,T,T> t)

{
return f(t.Iteml) + f(t.Item2) + f (t.Item3)

Pleasure

type Expr =

True

And of Expr * Expr
Nand of Expr * Expr
Or of Expr * Expr
Xor of Expr * Expr
Not of Expr

Pain

public abstract class Expr { }
public abstract class UnaryOp :Expr

{
public Expr First { get; private set; }

public UnaryOp(Expr first)
{

¥

this.First = first;

¥

public abstract class BinExpr : Expr

{
public Expr First { get; private set; }

public Expr Second { get; private set;
}

public BinExpr(Expr first, Expr second)

{
this.First = first;
this.Second = second;

You
Can

Interoperate
With
Everything

People
Love

Programming
IN
F#

F#: Influences

-~
w -~
~ -

Similar core
language

hpS
~

~

P

Similar object
model

’

F#. Combining Paradigms

I've been coding in F# lately, for a production task.

F# allows you to INn your programming style...
| start with pure functional code, shift slightly towards an
object-oriented style, and in production code, | sometimes
have to do some imperative programming.

| can start with a pure idea, and still finish my project with
realistic code. You're never disappointed in any phase of the
project!

Julien Laugel, Chief Software Architect, www.eurostocks.com

F#: The Combination Counts!

Scalable Explorative

Succinct Interoperable
/\
Statically .
Typed Efficient

Let's WebCrawl ...

Orthogonal & Unified Constructs

Type inference. The safety
of C# with the
succinctness _ of a scripting
language

« Let “let” simplify your life...

Bind a static value
let data = (1, 2, 3)

Bind a static function

let f (a, b, ¢c) =
let sum=a + b + ¢
let g X = sum + X*X

(g a, gb, goc)

Bind a local value

Bind a local function

Fundamentals - Whitespace
Matters

let computeDeriative f x =
let p1 = f (x - 0.05)

1e£ p2 = f (x + 0.05)

(p2 - p1) / 0.1

Offside (bad indentation)

Fundamentals - Whitespace
Matters

let computeDeriative f x =
let p1 = f (x - 0.05)

let p2 = f (x + 0.05)

(p2 - p1) / 0.1

Orthogonal & Unified Constructs

* Functions: like delegates + unified and simple

One simple

(fun x -> x + 1 RUESIEUSIURIRIGL) redicate = 'T -> bool
many

USES send = 'T -> unit
let f X Declare a

funci]
(f, 1)

threadstart = unit -> unit

A pair
_ _ ORI comparer = 'T -> 'T -> 1int
Int -> 1 nt

basher = 'T -> int
A function type

equality = 'T -> 'T -> bool

Functional— Pipelines

The pipeline operator

X |> f

Functional— Pipelines

Successive stages
In a pipeline

Immutability the norm...

// Part 1. Adjust some constants

let PI = 3.141592654 .
Data is immutable

PI <- 4.0 type Person = by default

: : { Name : string;
. This value is not Birth: DateTime }

Error List

let bob =
{ Name = "bob";
Birth = DateTime(15,6,1980) }

/S OK
let bobJunior =
{ bob with Birth = DateTime(23,5,2006) }

// Not OK!
Values may bob,Birth <- DateTime(23,5,2006)

not be |
changed ‘

Error List

&I 1 Error| | 1\ 0 Warning

Copy & Update

Description File

& 1 error FS0005: This field is not mutable test.fz

In Praise of Immutability

Immutable objects can be relied upon

Immutable objects can transfer between
threads

Immutable objects can be aliased safely

Immutable objects lead to (different)
optimization opportunities

Weakly Typed? Slow?

//F# //C#

#light using System;
open System

let a = 2
Console.WritelLine(a)

namespace ConsoleApplicationl

{

class Program

{

static int a()

2
2 {
‘ return 2;

!

satic void Main(string[]

Console.WritelLine(a);

-

Typed

Yet rich,
dynamic

Efficient

Yet succinct

F# Objects

F# - Objects + Functional

type Vector2D (dx:double, dy:double) =

Inputs to
object

member v.DX construction

member v.DY Exported
properties

member v.Length = sqrt (dx*dx+dy*dy)

member v.Scale (k) = Vector2D (dx*k,dy*k)

Exported
method

F# - Objects + Functional

type Vector2D(dx:double,dy:double) =

Internal (pre-
let norm2 = dx*dx+dy*dy computed) values

and functions
member v.DX dx
member v.DY = dy

member v.Length = sqrt(norm2)

member v.Norm2 = norm2

F# - Objects + Functional

Immutable
iInputs

type HuffmanEncoding(freq:seq<char*int>) =

< 50 lLlines of beautiful functional code>
Internal

tables

member Xx.Encode(input: seg<char>)
encode(input) Publish
aCCess
member x.Decode(input: seg<char>)
decode(input)

F# - Objects + Functional

type Vector2D(dx:double,dy:double) =

Internal state
let mutable currDX dx

let mutable currDX = dy
Publish

Internal state
member v.DX currDX

member v.DY currDY Mutate internal
State
member v.Move(x,y) =
currDX <- currDX+Xx
currDY <- currDY+y

Interlude: Case Study

The Scale of Things

* Weeks of data In training
N,000,000,000 impressions, 6TB data
« 2 weeks of CPU time during training
2 wks x 7 days x 86,400 sec/day =
1,209,600 seconds

* Learning algorithm speed requirement
« N,000 impression updates / sec
* NOO.O ps per impression update

F# and adCenter

4 week project, 4 machine learning experts

100million probabillistic variables
Processes 6TB of training data

Real time processing

F#'s powerful type

AdPredict: What We Of .- o e

Quick Coding
Agile Coding
Scripting
Performance
Memory-Faithful

Succinct

Symbolic

.NET Integration

typing, more thinking

Type-inferred code is
easily refactored

“Hands-on” exploration.

Immediate scaling to
massive data sets

mega-data structures,
16GB machines

Live in the domain,
not the language

Schema compilation

_ and tCahedules”
Especially Excel, SQL

Server

Smooth Transitions

« Researcher’s Brain =2 Realistic, Efficient Code

« Realistic, Efficient Code - Component

« Component - Deployment

F# Async/Parallel

F# Is a Parallel Language

(Multiple active computations)

F# Is a Reactive Language

(Multiple pending reactions)

e.g.
GUI Event
Page Load
Timer Callback
Query Response
HTTP Response
Web Service Response
Disk I/O Completion
Agent Gets Message

A Building Block for
Writing Reactive Code

* For users:
You can run it, but it may take a while

Or, your builder says...

OK, I can do the job, but | might have to talk to someone else
about it. I'll get back to you when I’'m done

Asynchronous "non-

ReadAsync “cat.jpg" blocking" action

do! WPlteAsync 1mage2 "dog.jpg’
do printfn "done!"
return image2j }

Continuation/
Event callback

You're actually writing this (approximately):

async.Delay(fun () ->
async.Bind(ReadAsync "cat.jpg", (fun image ->
let image2 = f image
async.Bind(writeAsync "dog.jpg", (fun ()
printfn "done!"
async.Return())))))

Code: Web Translation

Typical F# Reactive Architecture
@

Async.Parallel [...,]| (f (f (f N

(queued)

new Agent< >(async { ... }) (:)

new WebCrawler< >()
R iAo el AR E iaesid il i iie

event x.Started
event x.CrawledPage «:j? «:E?

event x.Finished

{

using System;
using System.IO;
using System.Threading;

Taming Asynchronous |/O

public class BulkImageProcAsync

public const String ImageBaseNam
public const int numImages = 200
public const int numPixels = 512

// ProcessImage has a simple O(N
// of times you repeat that loop
// bound or more IO-bound.

public static int processImageRe

// Threads must decrement NumIma
// their access to it through a
public static int NumImagesToFin
public static Object[] NumImages
// WaitObject is signalled when
public static Object[] WaitObjec
public class ImageStateObject

{

public byte[] pixels;

public static void ReadInImageCallback(IAsyncResult a

{

ImageStateObject state = (ImageStateObject)asyncRe
Stream stream = state.fs;
int bytesRead = stream.EndRead(asyncResult);
if (bytesRead != numPixels)
throw new Exception(String.Format
("In ReadInImageCallback, got the wrong nu
"bytes from the image: {0}.", bytesRead));
ProcessImage(state.pixels, state.imageNum);
stream.Close();

// Now write out the image.

// Using asynchronous I/O here appears not to be b

// It ends up swamping the threadpool, because the

// threads are blocked on I/O requests that were j

// the threadpool.

FileStream fs = new FileStream(ImageBaseName + st
".done", FileMode.Create, FileAccess.Write, Fi
4096, false);

fs.Write(state.pixels, @, numPixels);

fs.Close();

async { let
let!
let
let
do!
do

let ProcessImageAsync () =

inStream
pixels
pixels’
outStream
outStream.

File.OpenRead(sprintf "Image%d.tmp" i)
inStream.ReadAsync(numPixels)
TransformImage(pixels,i)
File.OpenWrite(sprintf "Image%d.done" i)
WriteAsync(pixels"') now.
Console.WriteLine

let ProcessImagesAsyncWorkflow() =
Async.Run (Async.Parallel
[for i in 1 ..

numImages -> ProcessImageAsync i])

much memory.
ible is a good

"done!" }

public static void ProcessImagesInBulk()

Console.WriteLine("Processing images... ");

long t@ = Environment.TickCount;

NumImagesToFinish = numImages;

AsyncCallback readImageCallback = new
AsyncCallback(ReadInImageCallback);

for (int i = @; i < numImages; i++)

{

ImageStateObject state = new ImageStateObject();

state.pixels = new byte[numPixels];

state.imageNum = i;

// Very large items are read only once, so you can make the

// buffer on the FileStream very small to save memory.

FileStream fs = new FileStream(ImageBaseName + i + ".tmp",
FileMode.Open, FileAccess.Read, FileShare.Read, 1, true);

state.fs = fs;

fs.BeginRead(state.pixels, @, numPixels, readImageCallback,
state);

¥

//_Determine whether all images are done being processed.
// block until all are fipi
bool mustBIO
lock (NumImagesMuTe
{

Processing
200 images in
parallel

6}" E

if (NumImagesToFinish > @
mustBlock = true;

¥
if (mustBlock)
{
Console.WriteLine("All worke OO ge
" Blocking until they complete. numLeft:
NumImagesToFinish);
Monitor.Enter(WaitObject);
Monitor.Wait(WaitObject);
Monitor.Exit(WaitObject);
¥
long t1 = Environment.TickCount;
Console.WriteLine("Total time processing images: {@}ms",
(t1 - t0));

Units of Measure

let EarthMmass = 5.9736e24<kg>

// Average between pole and equator radii
let EarthRadius = 6371.0e3<m>

// Gravitational acceleration on surface of Earth
let g = PhysicalConstants.G * EarthmMass / (EarthRadius * EarthRadius)

let EarthMass = 5.9736e24<Ma-

et EarthRadius = 6371.0e3<M:
et g = Math.PhysicalConstan

et va@atfz m/s *9

8 Ways to Learn

FSl.exe

Samples Included

Go to definition

Lutz’ Reflector

http://cs.hubfs.net

Codeplex Fsharp
Samples

Books

ML/Erlang/Haskell/
Clojure

Books about F#

Visit www.fsharp.net

Books about F#

A Comprebensive Guide for Writing Simple Code
- Problems

O’REILLY*® mith

www.fsharp.net

F# Ahead

F# will be a supported language In
Visual Studio 2010

* Next stop: Visual Studio 2010 Beta 2

ook for it soon!

Questions & Discussion

