
F#
Succinct, Expressive, FunctionalSuccinct, Expressive, Functional

Don Syme, 
Principal Researcher
Microsoft Research, Cambridge



Topics

• What is F# about?

• Some Simple F# Programming

• A Taste of Parallel/Reactive with F#



What is F# about?

Or: Why is Microsoft investing in functional 
programming anyway?



SimplicitySimplicity



EconomicsEconomics



Fun, Fun and More Fun!Fun, Fun and More Fun!



SimplicitySimplicity



Code!

//F#//F#//F#//F#

open open open open SystemSystemSystemSystem

let a = 2let a = 2let a = 2let a = 2

Console.WriteLine aConsole.WriteLine aConsole.WriteLine aConsole.WriteLine a

//C#//C#//C#//C#
using System;using System;using System;using System;

namespace ConsoleApplication1namespace ConsoleApplication1namespace ConsoleApplication1namespace ConsoleApplication1
{{{{

class class class class ProgramProgramProgramProgram
{{{{{{{{

static int a()static int a()static int a()static int a()
{{{{

return 2;return 2;return 2;return 2;
}}}}
static void Main(string[] static void Main(string[] static void Main(string[] static void Main(string[] argsargsargsargs))))
{{{{

Console.WriteLineConsole.WriteLineConsole.WriteLineConsole.WriteLine(a);            (a);            (a);            (a);            
}}}}

}}}}
}}}}

More Noise 

Than Signal!



Pleasure

type Command = Command of (Rover -> unit)

let BreakCommand = 

Command(fun rover -> rover.Accelerate(-1.0))

let TurnLeftCommand = 

Command(fun rover -> rover.Rotate(-5.0<degs>))

Pain
abstract class Command

{

public virtual void Execute();

}

abstract class MarsRoverCommand : Command

{

protected MarsRover Rover { get; private set; }

public MarsRoverCommand(MarsRover rover)

{

this.Rover = rover;this.Rover = rover;

}

}

class BreakCommand : MarsRoverCommand

{

public BreakCommand(MarsRover rover)

: base(rover)

{

}

public override void Execute()

{

Rover.Rotate(-5.0);

}

}

class TurnLeftCommand : MarsRoverCommand

{

public TurnLeftCommand(MarsRover rover)



Pleasure

let swap (x, y) = (y, x)

let rotations (x, y, z) = 

[ (x, y, z);

(z, x, y);

Pain

Tuple<U,T> Swap<T,U>(Tuple<T,U> t)

{

return new Tuple<U,T>(t.Item2, t.Item1)

}

ReadOnlyCollection<Tuple<T,T,T>> 

Rotations<T>(Tuple<T,T,T> t) 

{ (z, x, y);

(y, z, x) ]

let reduce f (x, y, z) = 

f x + f y + f z

new ReadOnlyCollection<int>

(new Tuple<T,T,T>[]

{ new Tuple<T,T,T>(t.Item1,t.Item2,t.Item3);     

new Tuple<T,T,T>(t.Item3,t.Item1,t.Item2); 

new Tuple<T,T,T>(t.Item2,t.Item3,t.Item1); 

});

}

int Reduce<T>(Func<T,int> f,Tuple<T,T,T> t) 

{ 

return f(t.Item1) + f(t.Item2) + f (t.Item3); 

}



Pleasure
type Expr = 

| True 

| And of Expr * Expr

| Nand of Expr * Expr

| Or of Expr * Expr

| Xor of Expr * Expr

| Not of Expr

Pain
public abstract class Expr { } 

public abstract class UnaryOp :Expr

{ 

public Expr First { get; private set; }

public UnaryOp(Expr first) 

{ 

this.First = first; 

} 

} } 

public abstract class BinExpr : Expr

{ 

public Expr First { get; private set; }

public Expr Second { get; private set;

} 

public BinExpr(Expr first, Expr second)

{ 

this.First = first; 

this.Second = second; 

} 



You
Can
InteroperateInteroperate
With
Everything



People
Love
Programming Programming 
in
F#



F#:  Influences

OCaml C#/.NETF#

Similar core 
language

Similar object
model



F#: Combining Paradigms

I've been coding in F# lately, for a production task. 

F# allows you to move smoothly in your programming style... 
I start with pure functional code, shift slightly towards an 
object-oriented style, and in production code, I sometimes object-oriented style, and in production code, I sometimes 
have to do some imperative programming. 

I can start with a pure idea, and still finish my project with 
realistic code. You're never disappointed in any phase of the 
project!

Julien Laugel, Chief Software Architect, www.eurostocks.com



F#: The Combination Counts!

Scalable

Libraries

Explorative

F#
Statically 

Typed

Succinct Interoperable

Efficient



Let’s WebCrawl ...Let’s WebCrawl ...



Orthogonal & Unified Constructs

• Let “let” simplify your life…

let data = (1, 2, 3)
Bind a static value

Type inference.  The safety
of C# with the 

succinctness of a scripting 
language

let f (a, b, c) = 
let sum = a + b + c 
let g x = sum + x*x 
(g a, g b, g c)

Bind a static function

Bind a local value

Bind a local function



Fundamentals - Whitespace 
Matters
let computeDeriative f x = 

let p1 = f (x - 0.05)

let p2 = f (x + 0.05)

(p2 – p1) / 0.1

Offside (bad indentation)



Fundamentals - Whitespace 
Matters
let computeDeriative f x = 

let p1 = f (x - 0.05)

let p2 = f (x + 0.05)

(p2 – p1) / 0.1



Orthogonal & Unified Constructs

• Functions: like delegates + unified and simple

(fun x -> x + 1) Lambdapredicate = 'T -> bool

One simple 
mechanism, 

many 
uses

let f x = x + 1

(f, f)

val f : int -> int

Declare a
function 

A pair 
of function values

send = 'T -> unit

threadStart = unit -> unit

comparer = 'T -> 'T -> int

hasher = 'T -> int

equality = 'T -> 'T -> bool

uses

A function type



Functional– Pipelines

x |> f

The pipeline operator

x |> f



Functional– Pipelines

x |> f1
|> f2

Successive stages 
in a pipeline

|> f2
|> f3



Immutability the norm…

Data is immutable 
by default

Values may 
not be 

changed

���� Not Mutate

���� Copy & Update



In Praise of Immutability

• Immutable objects can be relied upon

• Immutable objects can transfer between 
threadsthreads

• Immutable objects can be aliased safely

• Immutable objects lead to (different) 
optimization opportunities



//F#

#light

open System

let a = 2

Console.WriteLine(a)

//C#

using System;

namespace ConsoleApplication1

{

class Program

{

Weakly Typed? Slow?

{

static int a()

{

return 2;

}

static void Main(string[] 

args)

{

Console.WriteLine(a);            

}

}

}

Looks Weakly typed?
Maybe Dynamic?



Typed Untyped

F#
Yet rich, 
dynamic

Efficient
Interpreted
Reflection 

InvokeYet succinct



F# ObjectsF# Objects



F# - Objects + Functional

type Vector2D (dx:double, dy:double) =

member v.DX = dx

member v.DY = dy

Inputs to 
object 

construction

Exported member v.DY = dy

member v.Length = sqrt (dx*dx+dy*dy)

member v.Scale (k) = Vector2D (dx*k,dy*k)

Exported 
properties

Exported 
method



F# - Objects + Functional

type Vector2D(dx:double,dy:double) =

let norm2 = dx*dx+dy*dy

member v.DX = dx

Internal (pre-
computed) values 

and functions

member v.DX = dx

member v.DY = dy

member v.Length = sqrt(norm2)

member v.Norm2 = norm2



F# - Objects + Functional

type HuffmanEncoding(freq:seq<char*int>) =

...

< 50 lines of beautiful functional code>

...

Immutable 
inputs

Internal 
tables

member x.Encode(input: seq<char>) = 

encode(input)

member x.Decode(input: seq<char>) = 

decode(input)

tables

Publish 
access



F# - Objects + Functional

type Vector2D(dx:double,dy:double) =

let mutable currDX = dx

let mutable currDX = dy

Internal state

let mutable currDX = dy

member v.DX = currDX

member v.DY = currDY

member v.Move(x,y) = 

currDX <- currDX+x

currDY <- currDY+y

Publish 
internal state

Mutate internal 
state



Interlude: Case StudyInterlude: Case Study



The Scale of Things

• Weeks of data in training : 
N,000,000,000 impressions, 6TB data

• 2 weeks of CPU time during training : 
2 wks × 7 days × 86,400 sec/day = 

1,209,600 seconds1,209,600 seconds
• Learning algorithm speed requirement :

• N,000 impression updates / sec
• N00.0 µs per impression update



F# and adCenter

• 4 week project, 4 machine learning experts

• 100million probabilistic variables 

• Processes 6TB of training data • Processes 6TB of training data 

• Real time processing



AdPredict: What We Observed

• Quick Coding

• Agile Coding

• Scripting

• Performance

F#’s powerful type 
inference means less 
typing, more thinking

Type-inferred code is 
easily refactored

“Hands-on” exploration. 

Immediate scaling to 
massive data sets• Performance

• Memory-Faithful

• Succinct

• Symbolic

• .NET Integration

massive data sets

mega-data structures, 
16GB machines

Live in the domain , 
not the language

Schema compilation 
and “Schedules”

Especially Excel, SQL 
Server



Smooth Transitions

• Researcher’s Brain � Realistic, Efficient Code

• Realistic, Efficient Code � Component

• Component � Deployment



F# Async/Parallel



F# is a Parallel Language

(Multiple active computations )

F# is a Reactive Language

(Multiple pending reactions )

e.g.
GUI Event
Page Load

Timer Callback
Query Response
HTTP Response

Web Service Response
Disk I/O Completion
Agent Gets Message



async { ... }

async { ... }

A Building Block for 
Writing Reactive Code

• For users:
You can run it, but it may take a while

Or, your builder says...

OK, I can do the job, but I might  have to talk to someone else 
about it. I’ll get back to you when I’m done



async { ... }
async { let! image = ReadAsync "cat.jpg"

let image2 = f image

do! WriteAsync image2 "dog.jpg"

do printfn "done!" 

return image2 }

Continuation/
Event callback

Asynchronous "non-
blocking" action

You're actually writing this (approximately):

async.Delay(fun () -> 

async.Bind(ReadAsync "cat.jpg", (fun image ->

let image2 = f image

async.Bind(writeAsync "dog.jpg",(fun () ->

printfn "done!"

async.Return())))))



Code: Web TranslationCode: Web Translation



Typical F# Reactive Architecture

Single Threaded 
GUI

Async.Parallel [ ... ]

new Agent<_>(async { ... })

...

Async.Start (async { ... }

(queued)

Or

Single Threaded 
Page Handler

Or

Command Line 
Driver

new Agent<_>(async { ... })

new WebCrawler<_>()
Internally: new Agent<_>(...) ...

event x.Started
event x.CrawledPage
event x.Finished



Taming Asynchronous I/O

using System;

using System.IO;

using System.Threading;

public class BulkImageProcAsync

{

public const String ImageBaseName = "tmpImage-";

public const int numImages = 200;

public const int numPixels = 512 * 512;

// ProcessImage has a simple O(N) loop, and you can vary the number

// of times you repeat that loop to make the application more CPU-

// bound or more IO-bound.

public static int processImageRepeats = 20;

// Threads must decrement NumImagesToFinish, and protect

// their access to it through a mutex.

public static int NumImagesToFinish = numImages;

public static Object[] NumImagesMutex = new Object[0];

public static void ReadInImageCallback(IAsyncResult asyncResult)

{

ImageStateObject state = (ImageStateObject)asyncResult.AsyncState;

Stream stream = state.fs;

int bytesRead = stream.EndRead(asyncResult);

if (bytesRead != numPixels)

throw new Exception(String.Format

("In ReadInImageCallback, got the wrong number of " +

"bytes from the image: {0}.", bytesRead));

ProcessImage(state.pixels, state.imageNum);

stream.Close();

// Now write out the image.

// Using asynchronous I/O here appears not to be best practice.

// It ends up swamping the threadpool, because the threadpool

// threads are blocked on I/O requests that were just queued to

// the threadpool. 

public static void ProcessImagesInBulk()

{

Console.WriteLine("Processing images... ");

long t0 = Environment.TickCount;

NumImagesToFinish = numImages;

AsyncCallback readImageCallback = new

AsyncCallback(ReadInImageCallback);

for (int i = 0; i < numImages; i++)

{

ImageStateObject state = new ImageStateObject();

state.pixels = new byte[numPixels];

state.imageNum = i;

// Very large items are read only once, so you can make the 

// buffer on the FileStream very small to save memory.

FileStream fs = new FileStream(ImageBaseName + i + ".tmp",
public static Object[] NumImagesMutex = new Object[0];

// WaitObject is signalled when all image processing is done.

public static Object[] WaitObject = new Object[0];

public class ImageStateObject

{

public byte[] pixels;

public int imageNum;

public FileStream fs;

}

// the threadpool. 

FileStream fs = new FileStream(ImageBaseName + state.imageNum +

".done", FileMode.Create, FileAccess.Write, FileShare.None,

4096, false);

fs.Write(state.pixels, 0, numPixels);

fs.Close();

// This application model uses too much memory.

// Releasing memory as soon as possible is a good idea, 

// especially global state.

state.pixels = null;

fs = null;

// Record that an image is finished now.

lock (NumImagesMutex)

{

NumImagesToFinish--;

if (NumImagesToFinish == 0)

{

Monitor.Enter(WaitObject);

Monitor.Pulse(WaitObject);

Monitor.Exit(WaitObject);

}

}

}

FileStream fs = new FileStream(ImageBaseName + i + ".tmp",

FileMode.Open, FileAccess.Read, FileShare.Read, 1, true);

state.fs = fs;

fs.BeginRead(state.pixels, 0, numPixels, readImageCallback,

state);

}

// Determine whether all images are done being processed.

// If not, block until all are finished.

bool mustBlock = false;

lock (NumImagesMutex)

{

if (NumImagesToFinish > 0)

mustBlock = true;

}

if (mustBlock)

{

Console.WriteLine("All worker threads are queued. " +

" Blocking until they complete. numLeft: {0}",

NumImagesToFinish);

Monitor.Enter(WaitObject);

Monitor.Wait(WaitObject);

Monitor.Exit(WaitObject);

}

long t1 = Environment.TickCount;

Console.WriteLine("Total time processing images: {0}ms",

(t1 - t0));

}

}

let ProcessImageAsync () =

async { let inStream = File.OpenRead(sprintf "Image%d.tmp" i)

let! pixels = inStream.ReadAsync(numPixels)
let pixels'   = TransformImage(pixels,i)

let outStream = File.OpenWrite(sprintf "Image%d.done" i)

do! outStream.WriteAsync(pixels')
do Console.WriteLine "done!" }

let ProcessImagesAsyncWorkflow() =

Async.Run (Async.Parallel

[ for i in 1 .. numImages -> ProcessImageAsync i ])

Processing 
200 images in 

parallel



Units of MeasureUnits of Measure



let EarthMass = 5.9736e24<kg>

// Average between pole and equator radii
let EarthRadius = 6371.0e3<m>

// Gravitational acceleration on surface of Earth 
let g = PhysicalConstants.G * EarthMass / (EarthRadius * EarthRadius)



8 Ways to Learn

• FSI.exe

• Samples Included

• http://cs.hubfs.net

• Codeplex Fsharp 
Samples

• Go to definition

• Lutz’ Reflector

• Books

• ML/Erlang/Haskell/
Clojure



Books about F#

Visit www.fsharp.net



Books about F#

Visit www.fsharp.net



F# Ahead

F# will be a supported language in 
Visual Studio 2010 

• Next stop: Visual Studio 2010 Beta 2

Look for it soon!



Questions & DiscussionQuestions & Discussion


