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The Future is Parallel – Get Used To It

> Obligatory "free lunch is 
over" graph
● Shows trends in Moore's 

Law, CPU speed, power, 
and ILP over 40 years

● Graph courtesy of Herb
Sutter

> This talk will focus on the 
trends that are pushing 
us to an increasingly 
parallel world
● Whether we like it or not
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The Role of Threads

> A long time ago...
● Multiway systems were rare
● Threads were used primarily for asynchrony
● Concurrent programming was the realm of 

wizards
> Several boiled frogs later...

● Every system is concurrent today
● Every app is concurrent today

● Concurrency often injected silently via frameworks
● But programming with locks and threads still 

requires wizardry
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Shameless Plug

> Programming with threads and locks requires 
wizardry...
● Wizardry Instruction Manual available...
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The Role of Threads

> Threads were good enough when we could limit 
concurrency it to small corners of the program
● Could be crafted by wizards

> Threads have evolved for exposing hardware 
parallelism
● Necessary, but increases complexity and risk
● We didn't really notice this until the water was hot!

> The water is only going to get hotter
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Hardware Trends

> For years, CPU designers focused on increasing 
sequential performance
● Higher clock frequency
● Instruction-level parallelism (ILP)

> These factors created the "free lunch" 
environment we got used to
● But we've hit the wall on all of these

> Going forward CPU designers will focus on 
parallelism for increasing throughput
● Optimizing for computing bandwidth over latency
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Hitting the wall

> Serial performance has hit the wall
● Power Wall 

● Higher freq → more power → more heat → chip melts!
● Speed of light

● Takes more than a clock cycle for signal to propagate 
across a complex CPU!  

● Memory Wall
● Memory performance has lagged CPU performance
● Program performance now dominated by cache misses

● ILP Wall
● Hitting limits of practicality in branch prediction, 

speculative execution, multiple issue
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CPU Archeology

> Three main periods in CPU history
● CISC era
● RISC era
● Multicore era
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CISC systems

> CISC ISAs were designed to be used by humans
● Canonical example: VAX 

● Orthogonal instruction set
● Any instruction could be used with any data type and any 

combination of addressing modes
● Exotic primitives for functionality that would today live 

in libraries
● Packed character arithmetic, string pattern matching, 

polynomial evaluation
● Lots of addressing modes

● Multiple levels of indirection possible in a single instruction
● Convenient to program, hard to pipeline!

● Example: ADDL3  4(R1)[R2], @8(R1), R3
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CISC systems

> CPI (cycles per instruction) for CISC chips varied
● 4-10 was typical (but highly predictable!)
● Program performance was basically:

  N*page faults + instructions executed
● Memory was expensive

● So performance was generally dominated by page faults
● Both page fault count and instruction count were easy 

to measure
● Managing code and data locality was key to good 

performance

> CISC systems were hard to scale up
● Outrun by the dumber but more agile RISC chips!
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RISC systems

> RISC == Reduced Instruction Set Computing
● Design reboot – CPUs had gotten too complicated
● RISC has a highly simplified instruction set

● No memory-memory ops, simpler addressing modes
● No exotic ops
● Fixed width instructions
● Designed for easy pipelining

● Simplified architecture was easier to scale
● Cost: ISA not practical for programming by hand

● Required more sophisticated compilers
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The Next Reboot

> Just as RISC rebooted CISC, we're in the midst of 
another reboot
● Clock rates have been basically flat for 5 years
● RISC chips got complicated again!  

● Wacky speculative out-of-order execution
● Deep pipelines
● Heroic attempts to work around memory latency

● 80% of chip real estate devoted to cache
● Primary driver for wacky OOO techniques is memory latency

> Solution: more cores – but slower, simpler cores
● How are we going to use those cores?
● How must we change the way we program?  
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Memory subsystem performance

> Memory and CPU performance
both growing exponentially
● But with different bases
● Exponentially widening gap

> In older CPUs, memory access
was only slightly slower than register fetch
● Today, fetching from main memory could take 

several hundred clock cycles
> Drives need for sophisticated multilevel memory 

caches
● And cache misses still dominate performance
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Types of memory

> Static RAM (SRAM) – fast but expensive
● Six transistors per bit

> Dynamic RAM (DRAM) – cheap but slow
● One transistor + one capacitor per bit
● Improvements in DRAM (DDR, DDR2, etc) 

generally improve bandwidth but not latency
● Stated clock rate on memory understates latency

● 800MHz FSB is really 200MHz with four transfers per cycle
● DRAM protocol has many wait states
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Caching

> Adding small amounts of faster SRAM can really 
improve memory performance
● Caching works because programs exhibit both 

code and data locality (in both time & space)
● Typically have separate instruction and data caches
● Code and data each have their own locality

> Moves the data closer to the CPU
● Speed of light counts!  
● Major component of memory latency is wire delay

> Cost: more of our transistor budget used for 
cache
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Caching

> As the CPU-memory speed gap 
widens, need more cache layers
● Relative access speeds

● Register: <1 clk
● L1: ~3 clks
● L2: ~15 clks
● Main memory: ~200 clks

> On multicore systems, lowest
cache layer is shared
● But not all caches visible to

all cores
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Caching

> Trends in memory latency turn traditional 
performance models upside down
● In the old days, loads were cheap and multiplies / 

FP ops were expensive
● Now, multiplies are cheap but loads expensive!

> With a large gap between CPU and memory 
speed, cache misses dominate performance

> Memory is the new disk!  
> Speeding up the CPU doesn't help if it spends all 

its time waiting for data
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In search of faster memory access

> To make memory access cheaper
● Relax coherency constraints

● Exposes inherent parallelism and nondeterminism
● Improves throughput, not latency

> More complex programming model
● Must use synchronization to identify shared data

> Weird things can happen
● Stale reads
● Order of execution is 

     relative to the observing CPU (thread)
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The Quest for ILP

> ILP = Instruction Level Parallelism
● Attempts to exploit inherent parallelism 

transparently
> Goal: faster CPUs at the same clock rate, via

● Pipelining
● Branch Prediction
● Speculative execution
● Multiple-issue
● Out-Of-Order (O-O-O) execution
● And much more...
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The Quest for ILP: Pipelining

> Internally, each instruction has multiple stages
● Many of which must be done sequentially

● Fetching the instruction from memory
● Also identifying the end of the instruction (update PC)

● Decoding the instruction
● Fetching needed operands (memory or register)
● Performing the operation (e.g., addition)
● Writing the result somewhere (memory or register)

● Which means that executing an instruction from 
start to end takes more than one clock cycle

● But stages of different instructions can overlap
● While decoding instruction N, fetch instruction N+1
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Pipelining

> On early machines, these ops would be e.g. 4 clks
> Pipelining allows them to appear as 1 clk

● And allows a much higher clock rate
● Much of the execution is parallelized in the pipe

> Found on all modern CPUs

  
add  rbx,16         add 16 to register RBX
cmp  rax,0          then compare RAX to 0
  

add rbx,16
cmp rax,0 
Time
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Pipelining

> Pipelining improves throughput, but not latency
● The deeper the pipeline, the higher the 

(theoretical) multiplier for effective CPI
> "Single cycle execution" is a misnomer

● All instructions take multiple cycles end-to-end
● Pipelining can reduce CPI to 1 (in theory)

> RISC ISAs are designed for easier pipelining
● Instruction size is uniform, simplifying fetch
● No memory-to-memory ops
● Some ops not pipelined (e.g. div, some FP ops)
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Pipelining hazards

> Pipelining attempts to impose parallelism on 
sequential control flows

> This may fail to work if:
● There are conflicts over CPU resources
● There are data conflicts between instructions
● Instruction fetch is not able to identify the next PC

● For example, because of branches

> Hazards can cause pipeline stalls
● In the worst case, a branch could cause a 

complete pipeline flush
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Loads & Caches

ld   raxï[rbx+16] Loads RAX from memory
          

> Loads read from cache, then memory
● Cache hitting loads take 2-3 clks
● Cache misses to memory take 200-300 clks
● Can be many cache levels; lots of variation in clks

> Key theme: value in RAX might not be available for 
a long long time
● But how long is not transparent
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Loads & Caches

ld   raxï[rbx+16]   
...         
cmp  rax,0         RAX still not available

> Simplest CPUs stall execution until value is ready
● e.g. Typical GPU

> Commonly, execution continues until RAX is used
● Allows useful work in the miss “shadow”

> True data-dependence stalls in-order execution
● Also Load/Store Unit resources are tied up

cmp  rax,0
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Branch Prediction

ld   raxï[rbx+16]   
...                  
cmp  rax,0         No RAX  yet, so no flags
jeq  null_chk      Branch not resolved 
st   [rbx-16]ïrcx ...speculative execution
jeq  null_chk 

> Flags not available so branch predicts
● Execution past branch is speculative
● If wrong, pay mispredict penalty to clean up mess
● If right, execution does not stall
● Right > 95% of time
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Multiple issue

> Modern CPUs are designed to issue 
multiple instructions on each clock cycle
● Called multiple-issue or superscalar execution

● Offers possibility for CPI < 1
● Subject to all the same constraints 

(data contention, branch misprediction)
● Requires even more speculative execution
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Dual-Issue or Wide-Issue

> Can be dual-issued or wide-issued
● Same 1 clk for both ops
● Must read & write unrelated registers
● Or not use 2 of the same CPU resource

> Common CPU feature

  
add  rbx,16         add 16 to register RBX
cmp  rax,0          then compare RAX to 0
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Speculative Execution

> Speculative execution, branch prediction, wide 
issue, and out-of-order execution are synergistic

> Keep speculative state in extra renamed registers
● On mis-predict, toss renamed registers

● Revert to original register contents, still hanging around
● Like rolling back a transaction

● On correct-predict, rename the extra registers
● As the “real” registers
● Like committing a transaction
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16         
cmp  rax,0          
jeq  null_chk       
st   [rbx-16]ïrcx   
ld   rcxï[rdx+0]   
ld   raxï[rax+8]    
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X86 O-O-O Dispatch Example

ld   rax⇐[rbx+16]  Load RAX from memory
add  rbx,16         Assume cache miss -
cmp  rax,0            300 cycles to load
jeq  null_chk      Instruction starts and
st   [rbx-16]ïrcx  dispatch continues...
ld   rcxï[rdx+0]   
ld   raxï[rax+8]    

ld   raxï[rbx+16] 

Clock 0 – instruction 0
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16        Next op writes RBX -
cmp  rax,0          which is read by prior op
jeq  null_chk      Register-renaming allows
st   [rbx-16]ïrcx   parallel dispatch
ld   rcxï[rdx+0]   
ld   raxï[rax+8]    

add  rbx,16 

Clock 0 – instruction 1
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16         
cmp  rax,0         RAX not available yet -
jeq  null_chk      cannot compute flags
st   [rbx-16]ïrcx  Queues up behind load
ld   rcxï[rdx+0]   
ld   raxï[rax+8]    

cmp  rax,0 

Clock 0 – instruction 2
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16         
cmp  rax,0          
jeq  null_chk      flags still not ready
st   [rbx-16]ïrcx  branch prediction - 
ld   rcxï[rdx+0]    speculates not-taken
ld   raxï[rax+8]   Limit of 4-wide dispatch -
                    next op starts new clock

jeq  null_chk

Clock 0 – instruction 3
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16         
cmp  rax,0          
jeq  null_chk       
st   [rbx-16]ïrcx  Store is speculative 
ld   rcxï[rdx+0]   Result kept in store buffer
ld   raxï[rax+8]   Also RBX might be null
                   L/S used, no more mem
                   ops this cycle

st   [rbx-16]ïrcx

Clock 1 – instruction 4
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16         
cmp  rax,0          
jeq  null_chk       
st   [rbx-16]ïrcx   
ld   rcxï[rdx+0]   Unrelated cache miss!
ld   raxï[rax+8]   Misses now overlap
                   L/S unit busy again 

ld   rcxï[rdx+0]

Clock 2 – instruction 5
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X86 O-O-O Dispatch Example

ld   raxï[rbx+16]   
add  rbx,16         
cmp  rax,0          
jeq  null_chk       
st   [rbx-16]ïrcx   
ld   rcxï[rdx+0]    
ld   raxï[rax+8]   RAX still not ready
                   Load cannot start till
                   1st load returns

ld   raxï[rax+8]

Clock 3 – instruction 6
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X86 O-O-O Dispatch Summary

ld   raxï[rbx+16]  - In 4 clks started 7 ops
add  rbx,16         - And 2 cache misses
cmp  rax,0          - Misses return in cycle
jeq  null_chk         300 and 302.
st   [rbx-16]ïrcx  - So 7 ops in 302 cycles
ld   rcxï[rdx+0]   - Misses totally dominate
ld   raxï[rax+8]      performance
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The Quest for ILP

> Originally, these tricks were intended to just run 
more instructions at a time
● When run time was roughly equivalent to 

instruction count
> As memory latency dominates, the goal changes

● Allow more execution past cache misses
● So we can start the next cache miss earlier
● Run multiple cache misses in parallels
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The Quest for ILP

> Itanium: a Billion-$$$ Effort to mine static ILP
> Theory: Big Gains possible on “infinite” machines

● Machines w/infinite registers, infinite cache-
misses, infinite speculation, etc

> Practice: Not much gain w/huge effort
● Instruction encoding an issue
● Limits of compiler knowledge 

● e.g. memory aliasing even with whole-program opt
● Works well on scientific apps
● Not so well on desktop & server apps
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The Quest for ILP

> X86: a Grand Effort to mine dynamic ILP
● Incremental addition of performance hacks

> Deep pipelining, ever wider-issue, parallel 
dispatch, giant re-order buffers, lots of functional 
units, 128 instructions “in flight”, etc

> Limited by cache misses and branch mispredict
● Both miss rates are pretty low now

● But a miss costs 100-1000 instruction issue slots
● So a ~5% miss rate dominates performance
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How did this turn out?

> ILP is mined out
● As CPUs get more complicated, more transistors 

are thrown at dealing with the hazards of ILP
● Like speculative execution
● Instead of providing more computational power

● Moore's law gives us a growing transistor budget
● But we spend more and more on ILP hazards

● Latency is killing us
> Contrast to GPUs – zillions of simple cores

● But only works well on narrow problem domain
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Multicore and CMT

> Moore's law has been generous to us
● But the tax rate for sequential performance is 

ever-increasing
● Spending lots of transistors on speculative out-of-order 

execution, cache coherency protocols, and cache
● And hitting diminishing returns

> Time to reboot RISC
● RISC started simple, but got complicated
● Spend that budget on more slower, simpler cores

● Lower tax rate == more useful work per transistor
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Multicore and CMT

> More useful work per transistor sounds good
● But … must use those cores effectively

> One pesky problem: concurrency is hard
● We're still figuring that one out...
● This is the primary reason we don't have 100 core 

chips on every desktop
● Can easily fit 100 Pentium III cores on an Itanium die

● Pentium III had ~10M transistors
● Dual-core Itanium has 1.7B

● But the lack of parallel software is the gating factor
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Chip Multi-Threading (CMT)

> CMT embraces memory latency and let multiple 
threads share computation pipelines
● Every cycle, an instruction from a different thread 

is executed
● Improves throughput, not latency
● Can achieve very high pipeline utilization

● Niagara supports 4 
threads per core

● Niagara II supports 8
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Latency is the Enemy

> Much of the complexity of OOO CPUs comes 
from the need to work around memory latency

> The cure for latency is … concurrency
● Use threads to hide latency inherent in 

asynchronous IO
● ILP hides memory latency by finding other work to 

do (possibly speculatively)
● Lots Of Simple Cores hides memory latency by 

ensuring there's always a thread ready to run
> Concurrency hides latency!
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Latency is Everywhere

> Easier to improve bandwidth
than latency
● True for CPU, memory, disk,

networks
> Moore's Law is generous to

bandwidth, not to latency
● More/faster transistors helps 

bandwidth
● Can't outrace speed of light
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New metrics, new tools

> With CMT, speedup depends on memory usage 
characteristics!
● Code with lots of misses may see linear speedup

● (until you run out of bandwidth)
● Code with no misses may see none

> CPU utilization is often a misleading metric
> Need tools for measuring pipeline utilization, cache 

● Such as corestat for Sparc
> Out-of-cache is hard to spot in most profilers

● Just looks like all code is slow...
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Think Data, Not Code

> Performance is dominated by patterns of memory 
access
● Cache misses dominate – memory is the new disk
● VMs are very good at eliminating the cost of code 

abstraction, but not yet at data indirection
> Multiple data indirections may mean 

multiple cache misses
● That extra layer of indirection hurts!
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Think Data, Not Code

> Twenty years ago, we had to worry about locality 
to avoid paging
● Ten years ago, we forgot about that
● Locality is back! 

> Data locality should be a first-class design 
concern for high-performance software
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Exploiting Parallelism

> Keeping lots of cores busy requires more flexible 
decomposition of programs
● Fork-join / map-reduce
● Specify decomposition strategy independently of 

execution topology
● Let the runtime distribute across cores / nodes based 

on availability

> Consider message-passing approaches over 
direct coupling
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Share less, mutate less

> Shared data == OK
> Mutable data == OK
> Shared + mutable data = EVIL

● More likely to generate cache contention
● Multiple CPUs can share a cache line if all are readers

● Requires synchronization
● Error-prone, has costs

> Bonus: exploiting immutability also tends to make 
for more robust code
● Tastes great, less filling!
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Summary

> CPUs give the illusion of simplicity
> But have grown really complex under the hood

● There are lots of parts moving in parallel
● The performance model has changed
● Heroic efforts to speed things up are mined out

> Pendulum swinging back towards more, simpler 
cores
● Primary challenge: keeping those cores busy
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For more information

> Computer Architecture: A Quantitative Approach
● Hennesey and Patterson

> What Every Programmer Should Know About 
Memory
● Ulrich Drepper
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

Registers

data: 0      S
----: ---    I

LD/ST Unit
Compute

data: 0    
flag: 0

MESI

Memory Controller

CPUs

Caches

RAM



62 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

Registers

data: 0      S
----: ---    I

LD/ST Unit
Compute

data: 0    
flag: 0

MESI

Complex reality: 
Many cache levels
Each layer is 10x bigger
And 10x slower

RAM is itself complex: 
“Best effort” throughput
Not FIFO !

Data is replicated
No single “home”

Complex protocol
   Modified
   Exclusive
   Shared
   Invalid

Memory Controller
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

Registers

data: 0      S
----: ---    I

LD/ST Unit
Compute

data: 0    
flag: 0

MESI

bool flag;
Object data;
init() {
  data = ...; 
  flag = true;
}
Object read() {
  if( !flag ) ...;
  return data;
}

Memory Controller
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

Registers

data: 0      S
----: ---    I

LD/ST Unit
Compute

data: 0    
flag: 0

MESI

bool flag;
Object data;

Initial values
Memory Controller
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

?rax

data: 0      S
----: ---    I

?flag
Compute

data: 0    
flag: 0

?flag

if( !flag ) ...

ld  rax,[&flag]
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

?rax

data: 0      S
----: ---    I

?flag
Compute

data: 0    
flag: 0

!flag

if( !flag ) ...

ld  rax,[&flag]
           
      



67 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

LD/ST Unit
Compute

CPU #1

?rax

data: 0      S
----: ---    I

?flag
jeq rax,...

data: 0    
flag: 0

-flag

if( !flag ) ...

ld  rax,[&flag]
jeq rax,...

           ?flag
      

jeq rax,...

Load not ready
Value unknown
Branch predicts!



68 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

rax:123

----: ---    I
flag: 0      S

data:123
Compute

CPU #1

?rax, ?rbx

data: 0      S
----: ---    I

?flag, ?data

data: 0    
flag: 0

data = ...;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

           ?flag
      

Speculative
execution

?datadata:123
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Real Chips Reorder Stuff

CPU #0

rax:123

----: ---    I
flag: 0      S

data:123
Compute

CPU #1

?rax, ?rbx

data: 0      S
----: ---    I

?flag, ?data

data: 0    
flag: 0

data = ...;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

           ?flag
      

?datadata:123
True 
data 
race
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Real Chips Reorder Stuff

CPU #0

Registers

----: ---    I
flag: 0      S

data:123
Compute

CPU #1

?rax, ?rbx

data: 0      S
----: ---    I

?flag, ?data

data: 0    
flag: 0

!data

data = ...;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

           ?flag
      

data:0
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 0      S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: ---    I
----: ---    I

?flag

data: 0    
flag: 0

-data

data = ...;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

           ?flag
      



72 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 0      S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: ---    I
----: ---    I

?flag

data: 0    
flag: 0

data = ...;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

           ?flag
      

data in 2 places
Value is relative to observer
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 0      S

flag:1
Compute

CPU #1

?rax, rbx:0

----: ---    I
----: ---    I

?flag

data: 0    
flag: 0

!flag

data = ...;
flag=true;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax
st  [&flag],1

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

           ?flag
      

flag:1

data:123
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 1      M

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: ---    I
----: ---    I

?flag

data: 0    
flag: 0

-flag

data = ...;
flag=true;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax
st  [&flag],1

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

data:123    ?flag
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 1      M

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: ---    I
----: ---    I

?flag

data: 0    
flag: 0

data = ...;
flag=true;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax
st  [&flag],1

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

data:123    ?flag
      

flag:1
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 1      S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: ---    I
----: ---    I

?flag

data: 0    
flag: 0

data = ...;
flag=true;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax
st  [&flag],1

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

flag:1      ?flag
data:123   
      

flag:1
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 1      S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: ---    I
flag: 1      S

?flag

data: 0    
flag: 0

data = ...;
flag=true;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax
st  [&flag],1

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]

flag:1      
data:123   
      

flag:1
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Real Chips Reorder Stuff

CPU #0

Registers

data: 123    M
flag: 1      S

LD/ST Unit
Compute

CPU #1

rax:1, rbx:0

----: ---    I
flag: 1      S

LD/ST Unit

data: 0    
flag: 0

data = ...;
flag=true;

if( !flag ) …
return data;

mov rax,123
st  [&data],rax
st  [&flag],1

ld  rax,[&flag]
jeq rax,...
ld  rbx,[&data]
ret rbx

flag:1      
data:123   
      

Returning null
Crash-n-burn time!
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