
Concurrency: The Hardware Perspective

Or, how did we find ourselves in this mess?

Brian Goetz
Sun Microsystems
brian@briangoetz.com

This material is protected by
copyright and is licensed

only for use in connection
with specific presentations or

training engagements. For
permission to use, please

contact
brian@briangoetz.com.

2 Copyright 2009 Brian Goetz

Agenda

> Introduction
> The memory wall
> The Quest for ILP
> Multicore and CMT
> Changing our Behavior

3 Copyright 2009 Brian Goetz

The Future is Parallel – Get Used To It

> Obligatory "free lunch is
over" graph
● Shows trends in Moore's

Law, CPU speed, power,
and ILP over 40 years

● Graph courtesy of Herb
Sutter

> This talk will focus on the
trends that are pushing
us to an increasingly
parallel world
● Whether we like it or not

4 Copyright 2009 Brian Goetz

The Role of Threads

> A long time ago...
● Multiway systems were rare
● Threads were used primarily for asynchrony
● Concurrent programming was the realm of

wizards
> Several boiled frogs later...

● Every system is concurrent today
● Every app is concurrent today

● Concurrency often injected silently via frameworks
● But programming with locks and threads still

requires wizardry

5 Copyright 2009 Brian Goetz

Shameless Plug

> Programming with threads and locks requires
wizardry...
● Wizardry Instruction Manual available...

6 Copyright 2009 Brian Goetz

The Role of Threads

> Threads were good enough when we could limit
concurrency it to small corners of the program
● Could be crafted by wizards

> Threads have evolved for exposing hardware
parallelism
● Necessary, but increases complexity and risk
● We didn't really notice this until the water was hot!

> The water is only going to get hotter

7 Copyright 2009 Brian Goetz

Hardware Trends

> For years, CPU designers focused on increasing
sequential performance
● Higher clock frequency
● Instruction-level parallelism (ILP)

> These factors created the "free lunch"
environment we got used to
● But we've hit the wall on all of these

> Going forward CPU designers will focus on
parallelism for increasing throughput
● Optimizing for computing bandwidth over latency

8 Copyright 2009 Brian Goetz

Hitting the wall

> Serial performance has hit the wall
● Power Wall

● Higher freq → more power → more heat → chip melts!
● Speed of light

● Takes more than a clock cycle for signal to propagate
across a complex CPU!

● Memory Wall
● Memory performance has lagged CPU performance
● Program performance now dominated by cache misses

● ILP Wall
● Hitting limits of practicality in branch prediction,

speculative execution, multiple issue

9 Copyright 2009 Brian Goetz

CPU Archeology

> Three main periods in CPU history
● CISC era
● RISC era
● Multicore era

10 Copyright 2009 Brian Goetz

CISC systems

> CISC ISAs were designed to be used by humans
● Canonical example: VAX

● Orthogonal instruction set
● Any instruction could be used with any data type and any

combination of addressing modes
● Exotic primitives for functionality that would today live

in libraries
● Packed character arithmetic, string pattern matching,

polynomial evaluation
● Lots of addressing modes

● Multiple levels of indirection possible in a single instruction
● Convenient to program, hard to pipeline!

● Example: ADDL3 4(R1)[R2], @8(R1), R3

11 Copyright 2009 Brian Goetz

CISC systems

> CPI (cycles per instruction) for CISC chips varied
● 4-10 was typical (but highly predictable!)
● Program performance was basically:

 N*page faults + instructions executed
● Memory was expensive

● So performance was generally dominated by page faults
● Both page fault count and instruction count were easy

to measure
● Managing code and data locality was key to good

performance

> CISC systems were hard to scale up
● Outrun by the dumber but more agile RISC chips!

12 Copyright 2009 Brian Goetz

RISC systems

> RISC == Reduced Instruction Set Computing
● Design reboot – CPUs had gotten too complicated
● RISC has a highly simplified instruction set

● No memory-memory ops, simpler addressing modes
● No exotic ops
● Fixed width instructions
● Designed for easy pipelining

● Simplified architecture was easier to scale
● Cost: ISA not practical for programming by hand

● Required more sophisticated compilers

13 Copyright 2009 Brian Goetz

The Next Reboot

> Just as RISC rebooted CISC, we're in the midst of
another reboot
● Clock rates have been basically flat for 5 years
● RISC chips got complicated again!

● Wacky speculative out-of-order execution
● Deep pipelines
● Heroic attempts to work around memory latency

● 80% of chip real estate devoted to cache
● Primary driver for wacky OOO techniques is memory latency

> Solution: more cores – but slower, simpler cores
● How are we going to use those cores?
● How must we change the way we program?

14 Copyright 2009 Brian Goetz

Agenda

> Introduction
> The Memory Wall
> The Quest for ILP
> Multicore and CMT
> Changing our Behavior

15 Copyright 2009 Brian Goetz

Memory subsystem performance

> Memory and CPU performance
both growing exponentially
● But with different bases
● Exponentially widening gap

> In older CPUs, memory access
was only slightly slower than register fetch
● Today, fetching from main memory could take

several hundred clock cycles
> Drives need for sophisticated multilevel memory

caches
● And cache misses still dominate performance

16 Copyright 2009 Brian Goetz

Types of memory

> Static RAM (SRAM) – fast but expensive
● Six transistors per bit

> Dynamic RAM (DRAM) – cheap but slow
● One transistor + one capacitor per bit
● Improvements in DRAM (DDR, DDR2, etc)

generally improve bandwidth but not latency
● Stated clock rate on memory understates latency

● 800MHz FSB is really 200MHz with four transfers per cycle
● DRAM protocol has many wait states

17 Copyright 2009 Brian Goetz

Caching

> Adding small amounts of faster SRAM can really
improve memory performance
● Caching works because programs exhibit both

code and data locality (in both time & space)
● Typically have separate instruction and data caches
● Code and data each have their own locality

> Moves the data closer to the CPU
● Speed of light counts!
● Major component of memory latency is wire delay

> Cost: more of our transistor budget used for
cache

18 Copyright 2009 Brian Goetz

Caching

> As the CPU-memory speed gap
widens, need more cache layers
● Relative access speeds

● Register: <1 clk
● L1: ~3 clks
● L2: ~15 clks
● Main memory: ~200 clks

> On multicore systems, lowest
cache layer is shared
● But not all caches visible to

all cores

19 Copyright 2009 Brian Goetz

Caching

> Trends in memory latency turn traditional
performance models upside down
● In the old days, loads were cheap and multiplies /

FP ops were expensive
● Now, multiplies are cheap but loads expensive!

> With a large gap between CPU and memory
speed, cache misses dominate performance

> Memory is the new disk!
> Speeding up the CPU doesn't help if it spends all

its time waiting for data

20 Copyright 2009 Brian Goetz

In search of faster memory access

> To make memory access cheaper
● Relax coherency constraints

● Exposes inherent parallelism and nondeterminism
● Improves throughput, not latency

> More complex programming model
● Must use synchronization to identify shared data

> Weird things can happen
● Stale reads
● Order of execution is

 relative to the observing CPU (thread)

21 Copyright 2009 Brian Goetz

Agenda

> Introduction
> The Memory Wall
> The Quest for ILP
> Multicore and CMT
> Changing our Behavior

22 Copyright 2009 Brian Goetz

The Quest for ILP

> ILP = Instruction Level Parallelism
● Attempts to exploit inherent parallelism

transparently
> Goal: faster CPUs at the same clock rate, via

● Pipelining
● Branch Prediction
● Speculative execution
● Multiple-issue
● Out-Of-Order (O-O-O) execution
● And much more...

23 Copyright 2009 Brian Goetz

The Quest for ILP: Pipelining

> Internally, each instruction has multiple stages
● Many of which must be done sequentially

● Fetching the instruction from memory
● Also identifying the end of the instruction (update PC)

● Decoding the instruction
● Fetching needed operands (memory or register)
● Performing the operation (e.g., addition)
● Writing the result somewhere (memory or register)

● Which means that executing an instruction from
start to end takes more than one clock cycle

● But stages of different instructions can overlap
● While decoding instruction N, fetch instruction N+1

24 Copyright 2009 Brian Goetz

Pipelining

> On early machines, these ops would be e.g. 4 clks
> Pipelining allows them to appear as 1 clk

● And allows a much higher clock rate
● Much of the execution is parallelized in the pipe

> Found on all modern CPUs

add rbx,16 add 16 to register RBX
cmp rax,0 then compare RAX to 0

add rbx,16
cmp rax,0
Time

25 Copyright 2009 Brian Goetz

Pipelining

> Pipelining improves throughput, but not latency
● The deeper the pipeline, the higher the

(theoretical) multiplier for effective CPI
> "Single cycle execution" is a misnomer

● All instructions take multiple cycles end-to-end
● Pipelining can reduce CPI to 1 (in theory)

> RISC ISAs are designed for easier pipelining
● Instruction size is uniform, simplifying fetch
● No memory-to-memory ops
● Some ops not pipelined (e.g. div, some FP ops)

26 Copyright 2009 Brian Goetz

Pipelining hazards

> Pipelining attempts to impose parallelism on
sequential control flows

> This may fail to work if:
● There are conflicts over CPU resources
● There are data conflicts between instructions
● Instruction fetch is not able to identify the next PC

● For example, because of branches

> Hazards can cause pipeline stalls
● In the worst case, a branch could cause a

complete pipeline flush

27 Copyright 2009 Brian Goetz

Loads & Caches

ld raxï[rbx+16] Loads RAX from memory

> Loads read from cache, then memory
● Cache hitting loads take 2-3 clks
● Cache misses to memory take 200-300 clks
● Can be many cache levels; lots of variation in clks

> Key theme: value in RAX might not be available for
a long long time
● But how long is not transparent

28 Copyright 2009 Brian Goetz

Loads & Caches

ld raxï[rbx+16]
...
cmp rax,0 RAX still not available

> Simplest CPUs stall execution until value is ready
● e.g. Typical GPU

> Commonly, execution continues until RAX is used
● Allows useful work in the miss “shadow”

> True data-dependence stalls in-order execution
● Also Load/Store Unit resources are tied up

cmp rax,0

29 Copyright 2009 Brian Goetz

Branch Prediction

ld raxï[rbx+16]
...
cmp rax,0 No RAX yet, so no flags
jeq null_chk Branch not resolved
st [rbx-16]ïrcx ...speculative execution
jeq null_chk

> Flags not available so branch predicts
● Execution past branch is speculative
● If wrong, pay mispredict penalty to clean up mess
● If right, execution does not stall
● Right > 95% of time

30 Copyright 2009 Brian Goetz

Multiple issue

> Modern CPUs are designed to issue
multiple instructions on each clock cycle
● Called multiple-issue or superscalar execution

● Offers possibility for CPI < 1
● Subject to all the same constraints

(data contention, branch misprediction)
● Requires even more speculative execution

31 Copyright 2009 Brian Goetz

Dual-Issue or Wide-Issue

> Can be dual-issued or wide-issued
● Same 1 clk for both ops
● Must read & write unrelated registers
● Or not use 2 of the same CPU resource

> Common CPU feature

add rbx,16 add 16 to register RBX
cmp rax,0 then compare RAX to 0

32 Copyright 2009 Brian Goetz

Speculative Execution

> Speculative execution, branch prediction, wide
issue, and out-of-order execution are synergistic

> Keep speculative state in extra renamed registers
● On mis-predict, toss renamed registers

● Revert to original register contents, still hanging around
● Like rolling back a transaction

● On correct-predict, rename the extra registers
● As the “real” registers
● Like committing a transaction

33 Copyright 2009 Brian Goetz

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16
cmp rax,0
jeq null_chk
st [rbx-16]ïrcx
ld rcxï[rdx+0]
ld raxï[rax+8]

34 Copyright 2009 Brian Goetz

X86 O-O-O Dispatch Example

ld rax⇐[rbx+16] Load RAX from memory
add rbx,16 Assume cache miss -
cmp rax,0 300 cycles to load
jeq null_chk Instruction starts and
st [rbx-16]ïrcx dispatch continues...
ld rcxï[rdx+0]
ld raxï[rax+8]

ld raxï[rbx+16]

Clock 0 – instruction 0

35 Copyright 2009 Brian Goetz

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16 Next op writes RBX -
cmp rax,0 which is read by prior op
jeq null_chk Register-renaming allows
st [rbx-16]ïrcx parallel dispatch
ld rcxï[rdx+0]
ld raxï[rax+8]

add rbx,16

Clock 0 – instruction 1

36 Copyright 2009 Brian Goetz

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16
cmp rax,0 RAX not available yet -
jeq null_chk cannot compute flags
st [rbx-16]ïrcx Queues up behind load
ld rcxï[rdx+0]
ld raxï[rax+8]

cmp rax,0

Clock 0 – instruction 2

37 Copyright 2009 Brian Goetz

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16
cmp rax,0
jeq null_chk flags still not ready
st [rbx-16]ïrcx branch prediction -
ld rcxï[rdx+0] speculates not-taken
ld raxï[rax+8] Limit of 4-wide dispatch -
 next op starts new clock

jeq null_chk

Clock 0 – instruction 3

38 Copyright 2009 Brian Goetz

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16
cmp rax,0
jeq null_chk
st [rbx-16]ïrcx Store is speculative
ld rcxï[rdx+0] Result kept in store buffer
ld raxï[rax+8] Also RBX might be null
 L/S used, no more mem
 ops this cycle

st [rbx-16]ïrcx

Clock 1 – instruction 4

39 Copyright 2009 Brian Goetz

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16
cmp rax,0
jeq null_chk
st [rbx-16]ïrcx
ld rcxï[rdx+0] Unrelated cache miss!
ld raxï[rax+8] Misses now overlap
 L/S unit busy again

ld rcxï[rdx+0]

Clock 2 – instruction 5

40 Copyright 2009 Brian Goetz

X86 O-O-O Dispatch Example

ld raxï[rbx+16]
add rbx,16
cmp rax,0
jeq null_chk
st [rbx-16]ïrcx
ld rcxï[rdx+0]
ld raxï[rax+8] RAX still not ready
 Load cannot start till
 1st load returns

ld raxï[rax+8]

Clock 3 – instruction 6

41 Copyright 2009 Brian Goetz

X86 O-O-O Dispatch Summary

ld raxï[rbx+16] - In 4 clks started 7 ops
add rbx,16 - And 2 cache misses
cmp rax,0 - Misses return in cycle
jeq null_chk 300 and 302.
st [rbx-16]ïrcx - So 7 ops in 302 cycles
ld rcxï[rdx+0] - Misses totally dominate
ld raxï[rax+8] performance

42 Copyright 2009 Brian Goetz

The Quest for ILP

> Originally, these tricks were intended to just run
more instructions at a time
● When run time was roughly equivalent to

instruction count
> As memory latency dominates, the goal changes

● Allow more execution past cache misses
● So we can start the next cache miss earlier
● Run multiple cache misses in parallels

43 Copyright 2009 Brian Goetz

The Quest for ILP

> Itanium: a Billion-$$$ Effort to mine static ILP
> Theory: Big Gains possible on “infinite” machines

● Machines w/infinite registers, infinite cache-
misses, infinite speculation, etc

> Practice: Not much gain w/huge effort
● Instruction encoding an issue
● Limits of compiler knowledge

● e.g. memory aliasing even with whole-program opt
● Works well on scientific apps
● Not so well on desktop & server apps

44 Copyright 2009 Brian Goetz

The Quest for ILP

> X86: a Grand Effort to mine dynamic ILP
● Incremental addition of performance hacks

> Deep pipelining, ever wider-issue, parallel
dispatch, giant re-order buffers, lots of functional
units, 128 instructions “in flight”, etc

> Limited by cache misses and branch mispredict
● Both miss rates are pretty low now

● But a miss costs 100-1000 instruction issue slots
● So a ~5% miss rate dominates performance

45 Copyright 2009 Brian Goetz

How did this turn out?

> ILP is mined out
● As CPUs get more complicated, more transistors

are thrown at dealing with the hazards of ILP
● Like speculative execution
● Instead of providing more computational power

● Moore's law gives us a growing transistor budget
● But we spend more and more on ILP hazards

● Latency is killing us
> Contrast to GPUs – zillions of simple cores

● But only works well on narrow problem domain

46 Copyright 2009 Brian Goetz

Agenda

> Introduction
> The Memory Wall
> The Quest for ILP
> Multicore and CMT
> Changing our Behavior

47 Copyright 2009 Brian Goetz

Multicore and CMT

> Moore's law has been generous to us
● But the tax rate for sequential performance is

ever-increasing
● Spending lots of transistors on speculative out-of-order

execution, cache coherency protocols, and cache
● And hitting diminishing returns

> Time to reboot RISC
● RISC started simple, but got complicated
● Spend that budget on more slower, simpler cores

● Lower tax rate == more useful work per transistor

48 Copyright 2009 Brian Goetz

Multicore and CMT

> More useful work per transistor sounds good
● But … must use those cores effectively

> One pesky problem: concurrency is hard
● We're still figuring that one out...
● This is the primary reason we don't have 100 core

chips on every desktop
● Can easily fit 100 Pentium III cores on an Itanium die

● Pentium III had ~10M transistors
● Dual-core Itanium has 1.7B

● But the lack of parallel software is the gating factor

49 Copyright 2009 Brian Goetz

Chip Multi-Threading (CMT)

> CMT embraces memory latency and let multiple
threads share computation pipelines
● Every cycle, an instruction from a different thread

is executed
● Improves throughput, not latency
● Can achieve very high pipeline utilization

● Niagara supports 4
threads per core

● Niagara II supports 8

50 Copyright 2009 Brian Goetz

Latency is the Enemy

> Much of the complexity of OOO CPUs comes
from the need to work around memory latency

> The cure for latency is … concurrency
● Use threads to hide latency inherent in

asynchronous IO
● ILP hides memory latency by finding other work to

do (possibly speculatively)
● Lots Of Simple Cores hides memory latency by

ensuring there's always a thread ready to run
> Concurrency hides latency!

51 Copyright 2009 Brian Goetz

Latency is Everywhere

> Easier to improve bandwidth
than latency
● True for CPU, memory, disk,

networks
> Moore's Law is generous to

bandwidth, not to latency
● More/faster transistors helps

bandwidth
● Can't outrace speed of light

52 Copyright 2009 Brian Goetz

New metrics, new tools

> With CMT, speedup depends on memory usage
characteristics!
● Code with lots of misses may see linear speedup

● (until you run out of bandwidth)
● Code with no misses may see none

> CPU utilization is often a misleading metric
> Need tools for measuring pipeline utilization, cache

● Such as corestat for Sparc
> Out-of-cache is hard to spot in most profilers

● Just looks like all code is slow...

53 Copyright 2009 Brian Goetz

Agenda

> Introduction
> The Quest for ILP
> Memory Subsystem Performance
> Multicore and CMT
> Changing our behavior

54 Copyright 2009 Brian Goetz

Think Data, Not Code

> Performance is dominated by patterns of memory
access
● Cache misses dominate – memory is the new disk
● VMs are very good at eliminating the cost of code

abstraction, but not yet at data indirection
> Multiple data indirections may mean

multiple cache misses
● That extra layer of indirection hurts!

55 Copyright 2009 Brian Goetz

Think Data, Not Code

> Twenty years ago, we had to worry about locality
to avoid paging
● Ten years ago, we forgot about that
● Locality is back!

> Data locality should be a first-class design
concern for high-performance software

56 Copyright 2009 Brian Goetz

Exploiting Parallelism

> Keeping lots of cores busy requires more flexible
decomposition of programs
● Fork-join / map-reduce
● Specify decomposition strategy independently of

execution topology
● Let the runtime distribute across cores / nodes based

on availability

> Consider message-passing approaches over
direct coupling

57 Copyright 2009 Brian Goetz

Share less, mutate less

> Shared data == OK
> Mutable data == OK
> Shared + mutable data = EVIL

● More likely to generate cache contention
● Multiple CPUs can share a cache line if all are readers

● Requires synchronization
● Error-prone, has costs

> Bonus: exploiting immutability also tends to make
for more robust code
● Tastes great, less filling!

58 Copyright 2009 Brian Goetz

Summary

> CPUs give the illusion of simplicity
> But have grown really complex under the hood

● There are lots of parts moving in parallel
● The performance model has changed
● Heroic efforts to speed things up are mined out

> Pendulum swinging back towards more, simpler
cores
● Primary challenge: keeping those cores busy

59 Copyright 2009 Brian Goetz

For more information

> Computer Architecture: A Quantitative Approach
● Hennesey and Patterson

> What Every Programmer Should Know About
Memory
● Ulrich Drepper

61 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

Registers

data: 0 S
----: --- I

LD/ST Unit
Compute

data: 0
flag: 0

MESI

Memory Controller

CPUs

Caches

RAM

62 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

Registers

data: 0 S
----: --- I

LD/ST Unit
Compute

data: 0
flag: 0

MESI

Complex reality:
Many cache levels
Each layer is 10x bigger
And 10x slower

RAM is itself complex:
“Best effort” throughput
Not FIFO !

Data is replicated
No single “home”

Complex protocol
 Modified
 Exclusive
 Shared
 Invalid

Memory Controller

63 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

Registers

data: 0 S
----: --- I

LD/ST Unit
Compute

data: 0
flag: 0

MESI

bool flag;
Object data;
init() {
 data = ...;
 flag = true;
}
Object read() {
 if(!flag) ...;
 return data;
}

Memory Controller

64 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

Registers

data: 0 S
----: --- I

LD/ST Unit
Compute

data: 0
flag: 0

MESI

bool flag;
Object data;

Initial values
Memory Controller

65 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

?rax

data: 0 S
----: --- I

?flag
Compute

data: 0
flag: 0

?flag

if(!flag) ...

ld rax,[&flag]

66 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

?rax

data: 0 S
----: --- I

?flag
Compute

data: 0
flag: 0

!flag

if(!flag) ...

ld rax,[&flag]

67 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

LD/ST Unit
Compute

CPU #1

?rax

data: 0 S
----: --- I

?flag
jeq rax,...

data: 0
flag: 0

-flag

if(!flag) ...

ld rax,[&flag]
jeq rax,...

 ?flag

jeq rax,...

Load not ready
Value unknown
Branch predicts!

68 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

rax:123

----: --- I
flag: 0 S

data:123
Compute

CPU #1

?rax, ?rbx

data: 0 S
----: --- I

?flag, ?data

data: 0
flag: 0

data = ...;

if(!flag) …
return data;

mov rax,123
st [&data],rax

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

 ?flag

Speculative
execution

?datadata:123

69 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

rax:123

----: --- I
flag: 0 S

data:123
Compute

CPU #1

?rax, ?rbx

data: 0 S
----: --- I

?flag, ?data

data: 0
flag: 0

data = ...;

if(!flag) …
return data;

mov rax,123
st [&data],rax

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

 ?flag

?datadata:123
True
data
race

70 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

----: --- I
flag: 0 S

data:123
Compute

CPU #1

?rax, ?rbx

data: 0 S
----: --- I

?flag, ?data

data: 0
flag: 0

!data

data = ...;

if(!flag) …
return data;

mov rax,123
st [&data],rax

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

 ?flag

data:0

71 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 0 S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: --- I
----: --- I

?flag

data: 0
flag: 0

-data

data = ...;

if(!flag) …
return data;

mov rax,123
st [&data],rax

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

 ?flag

72 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 0 S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: --- I
----: --- I

?flag

data: 0
flag: 0

data = ...;

if(!flag) …
return data;

mov rax,123
st [&data],rax

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

 ?flag

data in 2 places
Value is relative to observer

73 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 0 S

flag:1
Compute

CPU #1

?rax, rbx:0

----: --- I
----: --- I

?flag

data: 0
flag: 0

!flag

data = ...;
flag=true;

if(!flag) …
return data;

mov rax,123
st [&data],rax
st [&flag],1

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

 ?flag

flag:1

data:123

74 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 1 M

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: --- I
----: --- I

?flag

data: 0
flag: 0

-flag

data = ...;
flag=true;

if(!flag) …
return data;

mov rax,123
st [&data],rax
st [&flag],1

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

data:123 ?flag

75 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 1 M

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: --- I
----: --- I

?flag

data: 0
flag: 0

data = ...;
flag=true;

if(!flag) …
return data;

mov rax,123
st [&data],rax
st [&flag],1

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

data:123 ?flag

flag:1

76 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 1 S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: --- I
----: --- I

?flag

data: 0
flag: 0

data = ...;
flag=true;

if(!flag) …
return data;

mov rax,123
st [&data],rax
st [&flag],1

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

flag:1 ?flag
data:123

flag:1

77 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 1 S

LD/ST Unit
Compute

CPU #1

?rax, rbx:0

----: --- I
flag: 1 S

?flag

data: 0
flag: 0

data = ...;
flag=true;

if(!flag) …
return data;

mov rax,123
st [&data],rax
st [&flag],1

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]

flag:1
data:123

flag:1

78 Copyright 2009 Brian Goetz

Real Chips Reorder Stuff

CPU #0

Registers

data: 123 M
flag: 1 S

LD/ST Unit
Compute

CPU #1

rax:1, rbx:0

----: --- I
flag: 1 S

LD/ST Unit

data: 0
flag: 0

data = ...;
flag=true;

if(!flag) …
return data;

mov rax,123
st [&data],rax
st [&flag],1

ld rax,[&flag]
jeq rax,...
ld rbx,[&data]
ret rbx

flag:1
data:123

Returning null
Crash-n-burn time!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

